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Abstract: A theory for set-valued functions is developed, which are translative with respect to a
linear operator. It is shown that such functions cover a wide range of applications, from projections
in Hilbert spaces, set-valued quantiles for vector-valued random variables, to scalar or set-valued
risk measures in finance with defaultable or nondefaultable securities. Primal, dual, and scalar
representation results are given, among them an infimal convolution representation, which is not
so well known even in the scalar case. Along the way, new concepts of set-valued lower/upper
expectations are introduced and dual representation results are formulated using such expectations.
An extension to random sets is discussed at the end. The principal methodology consisted of applying
the complete lattice framework of set optimization.

Keywords: T-translative functions; set-valued functions; complete lattice; risk measures; dual
representation; random sets

MSC: 06B23; 26E25; 49J53; 91G70; 49N15

1. Introduction

Set-valued risk measures for multivariate financial positions [1–4] make sense if there
is more than one asset eligible for risk-compensating deposits or as an accounting unit. A
typical situation is Kabanov’s model of a multicurrency market with frictions [5]. In such
market models, objects such as superhedging prices turn into sets of superhedging portfo-
lios since the operation of taking the infimum or supremum can no longer be performed in
a meaningful way if applied to sets in IRd with respect to the order relations generated, e.g.,
by solvency cones. This makes it extremely difficult to find multidimensional analogs to
intervals of arbitrage-free prices or good deal bounds [6] or to apply the utility indifference
pricing method.

Moreover, dual representation theorems such as the superhedging theorems in [5,7]
involve vector-valued consistent price processes as dual variables instead of martingale
measures and their densities. One may ask if this is an ad hoc construction or can be
embedded into a general duality theory.

“Set-valuedness” provides an elegant way to overcome such difficulties and arrives at
concepts and formulas that are very close to the scalar case. More specifically, infima and
suprema can be understood in complete lattices of sets that basically share all order-related
properties with the extended real line except the totalness of the order relation. It should be
noted that such set-valuedness is also intrinsic in common one-dimensional constructions.
For example, sets of lower and upper quantiles are intervals of the form {a}+ IR+ and
{b} − IR+, as are the set of superhedging and subhedging cash amounts in market models
with a single numéraire.
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In this paper, a general framework for set-valued translative functions and their
representation by scalar families is provided, and it is shown that it does not only cover
set-valued risk measures, but also set-valued lower and upper expectations, projections,
aggregation mappings, and set-valued quantiles for multivariate positions. Dualization
procedures in complete lattices of sets are shown to produce the “right” dual variables.

The concepts and definitions are more general than the corresponding ones in the
literature; some are even new, such as set-valued lower and upper expectations and
cover, for example also the case of multiple defaultable securities as eligible assets for
risk compensation [8] (the case with a single defaultable security was already discussed,
e.g., in [9]). A number of already existing applications such as set-valued systemic risk
measures [10] and conditional risk measures [11,12] were intentionally left out since their
inclusion would have required several more pages of technical preparation. However,
an unusual interpretation of conditional expectations as adjoint operators in Section 4.2
below indicates directions for the extension of the theory proposed in this paper to the
dynamic case.

2. Preliminaries
2.1. Complete Lattices of Sets

Let Z be a nontrivial, real linear space. The power set of Z (including the empty set
∅) is denoted by P(Z). The usual elementwise (Minkowski) sum of two nonempty sets
A, B ⊆ Z is defined by:

A + B = {a + b | a ∈ A, b ∈ B}

and extended by A + ∅ = ∅ + A = ∅ for A ∈ P(Z). A convex cone is a nonempty
set C ⊆ Z satisfying sC ⊆ C for all s > 0 and C + C ⊆ C where sA = {sz | z ∈ A}
for a nonempty set A ∈ P(Z). Moreover, for nonempty sets A ⊆ Z, the operation
−A = {−a | a ∈ A} is also used, as well as −∅ = ∅.

Let C ⊆ Z be a convex cone with 0 ∈ C. Such a cone generates a vector preorder,
i.e., a reflexive, transitive relation, denoted by ≤C, which is compatible with the algebraic
operations on Z via:

y ≤C z ⇔ z− y ∈ C.

The cone C is also called the positivity cone of ≤C since it can be recovered by
C = {z ∈ Z | 0 ≤C z}.

The set:
P(Z, C) = {D ⊆ Z | D = D + C}

along with its obvious twin P(Z,−C) serves as basic image set of set-valued functions in
this paper. It is known [13] that (P(Z, C),⊇) and (P(Z,−C),⊆) are complete lattices. The
result is stated for the sake of future reference.

Proposition 1. The pair (P(Z, C),⊇) is a complete lattice in which the infimum and the supre-
mum of a set A ⊆ P(Z, C) are:

inf
A∈A

A =
⋃

A∈A
A and sup

A∈A
A =

⋂
A∈A

A, (1)

respectively. The pair (P(Z,−C),⊆) is a complete lattice in which the infimum and the supremum
of a set B ⊆ P(Z,−C) are:

inf
B∈B

B =
⋂

B∈B
B and sup

B∈B
B =

⋃
B∈B

B, (2)

respectively.

Remark 1. The situation is completely symmetric: just the roles of the infimum and supre-
mum are swapped. Moreover, ∅ is the top element in (P(Z, C),⊇) and the bottom element
in (P(Z,−C),⊆) if one understands that ⊇ in P(Z, C) corresponds to ≤ for real numbers,
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whereas ⊆ in P(Z,−C) corresponds to ≤ in IR. This is motivated by the interpretation of C as the
positivity cone in Z with respect to the preorder ≤C on Z: A, B ∈ P(Z, C), and A ⊇ B means that
for each b ∈ B, there is a ∈ A with a ≤C b, whereas both sets are directed upwards with respect to
≤C (clearly, ⊇ can be considered as “≤” in this case). Similarly, A, B ∈ P(Z,−C), and A ⊆ B
means that for each a ∈ A, there is b ∈ B with a ≤C b. whereas both sets are directed downwards
with respect to ≤C. Such order relations with the same understanding of ⊇ as “≤” for sets that
are directed upwards and ⊆ as “≤” for sets that are directed downwards are actually the basis
for extending the ≤-relation from the rational numbers to the real numbers via upper and lower
Dedekind cuts, i.e., sets of the form [a,+∞) and (−∞, b], respectively, for rational numbers a, b.
Within an economic context, such order relations with the same interpretation were used in [14], for
example. More details and references can be found in ([13] Sec. 2.2) and [15].

Several lattices are used in the sequel, which include subsets of P(Z, C), P(Z,−C).
We shall denote this by:

C(Z, C) = {D ⊆ Z | D = co (D + C)} and C(Z,−C) = {D ⊆ Z | D = co (D− C)},

where co A denotes the convex hull of a set A ⊆ Z and D− C = D + (−C).
As before, (C(Z, C),⊇), as well as (C(Z,−C),⊆) are complete lattices. The “intersec-

tion” formulas for the supremum/infimum coincide with the ones in (1) and (2), respec-
tively, and one has:

inf
A∈A

A = co
⋃

A∈A
A and sup

B∈B
B = co

⋃
B∈B

B (3)

for A ⊆ C(Z, C), B ⊆ C(Z,−C).
Furthermore, if Z is a topological space, one can define:

F (Z, C) = {D ⊆ Z | D = cl (D + C)} and F (Z,−C) = {D ⊆ Z | D = cl (D− C)}
G(Z, C) = {D ⊆ Z | D = cl co (D + C)} and G(Z,−C) = {D ⊆ Z | D = cl co (D− C)}

where cl A stands for the topological closure of A ⊆ Z.
Again, (F (Z, C),⊇), (G(Z, C),⊇), as well as (F (Z,−C),⊆), (G(Z,−C),⊆) are com-

plete lattices with the same “intersection” Formulas in (1) and (2). The “union” formulas
are those in (3) where the closure replaces the convex hull in F and the closure of the
convex hull is taken in G.

2.2. Further Notation

Throughout the paper, the following notation is used:

• If X is a locally convex space, a linear space X∗ together with a duality pairing (a
bilinear functional from X× X∗ → IR that separates points in X and X∗) is considered,
which turn (X, X∗) into a dual pair of linear spaces (see ([16], Definition 5.90)). The
duality pairing for x ∈ X, x∗ ∈ X∗ is written as x∗(x). The topology on X is assumed
to be consistent with the dual pair, i.e., X∗ can be identified with the topological dual
of X (the linear space of all continuous linear functionals on X). Such a topology is
always separated (also known as Hausdorff; see ([16], Lemma 5.97)). A topology on
X∗ will not be considered in this paper;

• If X is a separated locally convex space and D ⊆ X a closed convex set, the set
rec D = {y ∈ X | D + {y} ⊆ D} ⊆ X is a closed convex cone, the recession
cone of D. It is the largest (with respect to inclusion) closed convex cone B ⊆ D
satisfying D + B ⊆ D. If (X, X∗) is a dual pair of locally convex spaces, the function
σD : X∗ → IR∪{±∞} defined by σD(x∗) = supx∈D x∗(x) is the usual support function
of D. Its domain, namely dom σD = {x∗ ∈ X∗ | σD(x∗) < +∞} ⊆ X∗, is a convex
cone, which is called the barrier cone of D and denoted by barr D;
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• If (X, X∗) is a dual pair of locally convex spaces and B ⊆ X is a cone, the set:

B+ = {x∗ ∈ X∗ | ∀x ∈ X : x∗(x) ≥ 0}

is called the (positive) dual cone of B;
• (Ω,F ) denotes a measurable space and L0

d := L0
d(Ω,F ) the linear space of ran-

dom variables over (Ω,F ), which take values in IRd; the case d = 1 is denoted by
L0 := L0(Ω,F );

• (Ω,F , P) denotes a probability space and Lp
d := Lp

d(Ω,F , P) for p = 0 or p ∈ [1, ∞)
the linear space of equivalence classes with respect to the P-a.s. equality of p-integrable
random variables with values in IRd, and L∞

d := L∞
d (Ω,F , P) is the corresponding

linear space of essentially bounded random variables with values in IRd; Lp
d is a Banach

space for p ∈ [1, ∞]; the case d = 1 is denoted by Lp;
• 1I denotes the random variable, which takes the value of 1 for all ω ∈ Ω in L0 and

P-almost surely in Lp for p = 0 or p ∈ [1, ∞], respectively;
• The pair (Lp

d , Lq
d) with p ∈ (1, ∞) and p−1 + q−1 = 1, or p = 1, q = ∞, or p = ∞,

q = 1 is a dual pair with respect to the duality pairing given by E[X>Y] for X ∈ Lp
d ,

Y ∈ Lq
d. Topologies on Lp

d that are consistent with the dual pair (Lp
d , Lq

d) are considered.
If p ∈ [1, ∞), the usual Banach space topology does the job, whereas if p = ∞, the
weak∗ topology is considered.

Finally, we point out a slight abuse of notation due to the traditional use of capital
letters such as X as a (topological or locally convex etc.) linear space in a functional analytic
framework and as a random variable in a stochastic/finance setting. We trust the reader
can always make the distinction.

3. Set-Valued T-Translative Functions—Theory
3.1. The General Model and Primal Representations

In the first part of this section, it is assumed that X and Z are nontrivial, real linear
spaces and C ⊆ Z is a convex cone with 0 ∈ C.

Definition 1. Let T : Z → X be an injective linear operator. A function f : X → P(Z) is called
translative with respect to T (or just T-translative) if:

∀x ∈ X, ∀z ∈ Z : f (x + Tz) = f (x) + {z}. (4)

An outlook to financial applications is as follows: Let Z = IRm with a set
{

h1, . . . , hm} ⊆
X of m linearly independent elements and T : IRm → X defined by Tz = ∑m

k=1 zkhk (be-
low; this is referred to as the “standard example” for T). If X = L0

d, which comprises
the terminal payoffs of contingent claims and the elements h1, . . . , hm are eligible for risk
compensation or as hedging instruments, then T models the corresponding strategies, i.e.,
Tz is the payoff of a portfolio constructed of eligible instruments (see, e.g., [8,17]). With
d = m = 1 and Tz = z1I, one easily recovers cash additive risk measures [18] (see [19] for a
modern exposition) as extended real-valued (−T)-translative functions.

Translative functions can be represented via their zero sublevel sets defined by:

A f = {x ∈ X | 0 ∈ f (x)}. (5)

Vice versa, a function fA : X → P(Z) can be assigned to a set A ⊆ X by means of:

fA(x) = {z ∈ Z | x− Tz ∈ A}. (6)

The following feature will play a crucial role.

Definition 2. A set A ⊆ X is called (T, C)-translative if:
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∀z ∈ C : A + {−Tz} ⊆ A. (7)

Many properties of f can equivalently be characterized by the properties of A f ,
and vice versa. The basic primal representation result for T-translative functions reads
as follows.

Proposition 2. (a) Let f : X → P(Z) be a T-translative function. Then, f = fA f . If f addition-
ally maps into P(Z, C), then A f is (T, C)-translative.

(b) Let A ⊆ X be an arbitrary set. Then, the function fA : X → P(Z) is T-translative and
A = A fA . Moreover, if A is (T, C)-translative, then fA maps into P(Z, C).

Proof. (a) From the T-translativity of f , we obtain for all x ∈ X:

fA f (x) =
{

z ∈ Z | x− Tz ∈ A f

}
= {z ∈ Z | 0 ∈ f (x− Tz)}

= {z ∈ Z | 0 ∈ f (x) + {−z}} = f (x).

Now, assume that f additionally maps into P(Z, C). Then, for each x ∈ A f , z ∈ C, we
obtain 0 ∈ f (x) = f (x− Tz) + {z} ⊆ f (z− Tz); hence, x− Tz ∈ A f .

(b) Take x ∈ X and z ∈ Z. Then:

fA(x + Tz) = {y ∈ Z | x + Tz− Ty ∈ A}
= {y− z ∈ Z | x− T(y− z) ∈ A}+ {z} = fA(x) + {z},

so fA is T-translative. Moreover, one has:

A fA = {x ∈ X | 0 ∈ fA(x)} = {x ∈ X | 0 ∈ {z ∈ Z | x− Tz ∈ A}} = A.

If A is (T, C)-translative, x ∈ X and z ∈ C, then:

fA(x) + {z} = fA(x + Tz) = {y ∈ Z | x + Tz− Ty ∈ A}
= {y ∈ Z | x− Ty ∈ A + {−Tz}} ⊆ fA(x)

since A + {−Tz} ⊆ A by the (T, C)-translativity of A; thus, fA maps into P(Z, C). This
completes the proof of the proposition.

Remark 2. Of course, Proposition 2 has a P(Z,−C)-valued analog as do many such results in the
following; one can just replace C by −C and change the order, if necessary. This will not be stated
below, but is used frequently.

Corollary 1. (a) Let f : X → P(Z) be T-translative. Then, f maps into P(Z, C) if, and only if,
A f is (T, C)-translative.

(b) Let A ⊆ X be a set. Then, fA maps into P(Z, C) if, and only if, A is (T, C)-translative.

Proof. (a) If f maps into P(Z, C), then A f is (T, C)-translative by Proposition 2 (a). Vice
versa, if A f is (T, C)-translative, then Proposition 2 (b) yields that fA f maps into P(Z, C),
and hence, also f does, since fA f = f by Proposition 2 (a).

(b) fA is T-translative by construction, so one can apply Part (a) to it and obtains the
result since A = A fA by Proposition 2 (b).

Proposition 2 and Corollary 1 are the prototypes of the correspondence results for
translative functions and their zero sublevel sets. In the (a)-part (as in (5)), a translative
function is considered as the primary object, whereas in the (b)-part (as in (6)), a set A ⊆ X
is the departure point. Compare the discussions in ([20], Sec. 1), ([8], Sec. 1) within a
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financial context. From a mathematical point of view, both approaches are completely
tantamount as far as T-translative functions mapping into P(Z, C) and (T, C)-translative
sets are concerned.

In the sequel, only the (a)-parts of the correspondence results will be stated, but they
can always be complemented by the corresponding (b)-parts whose proofs follow by a
simple application of the (a)-part as in the proof of the preceding corollary.

The next result provides a representation of a T-translative f as an infimal convolution.
For this purpose, the function JT : X → P(Z, C) given by:

JT(x) =
{
{z}+ C : x = Tz

∅ : otherwise

is introduced. Note that JT is well defined since T is assumed to be injective. More-
over, it can straightforwardly be checked that JT is T-translative (as well as its P(Z,−C)-
valued analog).

Proposition 3. A function f : X → P(Z, C) is T-translative if, and only if, there is a function
g : X → P(Z, C) such that:

∀x ∈ X : f (x) = (g� JT)(x) = inf{g(x1) + JT(x2) | x1 + x2 = x}

Proof. For one direction, one just shows that g� JT indeed is T-translative and maps into
P(Z, C). For the other direction, observe that the equation f = fA f can be written as:

∀x ∈ X : f (x) = fA f (x) = inf
{

IA f (x1) + JT(x2) | x1 + x2 = x
}
=
(

IA f � JT

)
(x) (8)

where IA is the set-valued indicator function of A: IA(x) = C if x ∈ A and IA(x) = ∅ if
x 6∈ A.

While the representation via zero sublevel sets (also known as acceptance sets in risk
measure theory) is standard and well known, the representation as an infimal convolution
as in Proposition 3 is not so well known, even in the scalar case. Compare ([21], Def. 4.5),
where a scalar version of JT was used to define the numéraire-invariant (and monotone) hull
of an extended real-valued function. It was used as a fundamental tool for constructing risk
measures and their dual representations in [22]. Note the perfect analog of the set-valued
infimal convolution to the scalar one thanks to the complete lattice property.

The representation in (8) can be understood as splitting the T-translative function f
into a part related to the T-translativity and a part related to its zero sublevel set.

Remark 3. The T-translativity property readily implies:

∀z ∈ Z : f (Tz) = f (0) + {z}.

Thus, f behaves as a linear function plus a constant on the linear subspace TZ ⊆ X. If f is
sublinear or superlinear (see below), then f (0) is a convex cone and f is of the type “point plus cone”
on TZ, i.e., basically a vector-valued function.

If f : X → P(Z) is a function, − f : X → P(Z) is defined by (− f )(x) = − f (x).
Clearly, if f maps into P(Z, C), then − f maps into P(Z,−C), and vice versa.

Remark 4. Let f1 : X → P(Z, C) be a T-translative function. The functions f2, f3, f4 defined by:

f2(x) = f1(−x), f3(x) = − f1(x), f4(x) = − f1(−x)

are variants of f1. The following two facts are straightforward:
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(1) f1, f2 map into P(Z, C), while f3, f4 map into P(Z,−C);
(2) f1 and f4 are T-translative, while f2 (as well as f3) satisfies:

∀x ∈ X, ∀z ∈ Z : f2(x + Tz) = f2(x) + {−z}. (9)

Thus, f2, f3 are (−T)-translative, which means that the previous and following representation
results apply to them with obvious adaptions.

3.2. Further Correspondences

A few concepts related to complete lattice-valued functions are needed for the subse-
quent results. The following sets are associated with a function f : X → P(Z), namely its
graph and its domain, defined by:

graph f = {(x, z) ∈ X× Z | z ∈ f (x)} and dom f = {x ∈ X | f (x) 6= ∅},

respectively. The condition dom f 6= ∅ means that f is not everywhere equal to the
top element if f maps into (P(Z, C),⊇), and likewise, it is not everywhere equal to the
bottom element if f maps into (P(Z,−C),⊆). A function f : X → P(Z) is called proper if
dom f 6= ∅ and f (x) 6= Z for all x ∈ X. This definition can be used for P(Z, C)-valued, as
well as for P(Z,−C)-valued functions.

Definition 3. A function f : X → P(Z, C) is called:
(a1) Convex if graph f is a convex subset of X× Z;
(b1) Positively homogeneous if graph f is a cone in X× Z;
(c1) Subadditive if graph f + graph f ⊆ graph f ;
(d1) Sublinear if graph f is a convex cone in X× Z;
(e1) Monotone with respect to ≤B (or just B-monotone) if x1 ≤B x2 implies f (x1) ⊇ f (x2).
A function g : X → P(Z,−C) is called:
(a2) Concave if graph g is a convex subset of X× Z;
(b2) Positively homogenous if graph g is a cone in X× Z;
(c1) Superadditive if graph f + graph f ⊆ graph f ;
(d2) Superlinear if graph g is a convex cone in X× Z;
(e2) Monotone with respect to ≤B (or just B-monotone) if x1 ≤B x2 implies g(x1) ⊆ g(x2).

In this definition, B ⊆ X is a convex cone with 0 ∈ B.

Remark 5. Three comments about convexity-related properties are in order.
First, if f is convex, then f (x) is a convex subset of Z for all x ∈ X, i.e., a convex function

with values in P(Z, C) automatically maps into C(Z, C). Similarly, a concave function with values
in P(Z,−C) maps into C(Z,−C). Moreover, if f is positively homogenous, then f (0) is a cone,
thus a convex cone whenever f is sublinear or superlinear (see Remark 3).

Secondly, the convexity of a P(Z, C)-valued function f is equivalent to Jensen’s inequality:

∀x, y ∈ X, ∀s ∈ (0, 1) : f (sx + (1− s)y) ⊇ s f (x) + (1− s) f (y),

i.e., ⊇ corresponds to ≤ for real numbers (see the interpretation in Remark 1). Similarly, the
concavity of a P(Z,−C)-valued function g is equivalent to:

∀x, y ∈ X, ∀s ∈ (0, 1) : sg(x) + (1− s)g(y) ⊆ g(sx + (1− s)y),

i.e., ⊆ corresponds to ≤ for real numbers in this case (again, see Remark 1). Likewise, the subaddi-
tivity of f : X → P(Z, C) is equivalent to f (x + y) ⊇ f (x) + f (y) for all x, y ∈ X with a parallel
condition for superadditive g.

Thirdly, one should note that the graph of a P(IR, IR+)-valued function corresponds to the
epigraph and the graph of a P(IR,−IR+)-valued function to the hypograph of an extended real-
valued function. This again confirms that Definition 3 (a1), (a2) (as well as (c1), (c2), (d1), (d2)) is
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perfectly consistent with and true generalizations of the scalar ones. One may compare [23]: the
set-valued upper and lower expectations therein do not share most of these features.

Remark 6. With Remark 4 in view, one may note that f1 is B-monotone if, and only if, f4 is
B-monotone as well, and f2 and f3 are (−B)-monotone.

The above definitions have the great advantage that most known scalar results remain
valid. For example, a positively homogenous P(Z, C)-valued function is convex if, and
only if, it is subadditive, and a function f : X → P(Z, C) is convex if, and only if, the
function − f : X → P(Z,−C) is concave. Compare ([13], Sec. 4) for such relationships and
more references.

If Z is a topological space, the following concept can be introduced.

Definition 4. A set A ⊆ X is called T-directionally closed if for any net
{

zλ
}

λ∈Λ converging to
0 ∈ Z and any x ∈ X,

∀λ ∈ Λ : x + Tzλ ∈ A implies x ∈ A.

If the topology on Z is first-countable, then nets can be replaced by sequences.

One should note that only the topology on Z enters this definition, not a (potential)
one on X. Of course, if A is closed with respect to a topology on X, then it is T-directionally
closed for each continuous T.

If, in addition, X is a topological space, the following concepts can be considered.

Definition 5. A function f : X → P(Z) is called:
(a) Closed-valued if f (x) is a closed set for all x ∈ X;
(b) Level-closed if the sublevel set {x ∈ X | z ∈ f (x)} is closed for each z ∈ Z;
(c) Closed if graph f is a closed subset of X× Z with respect to the product topology.

Remark 7. Two comments about the closedness properties are in order.
First, a closed P(Z, C)-valued function has closed values and closed sublevel sets, i.e., it

automatically maps into F (Z, C). If such a function is additionally convex, it maps into G(Z, C).
Similarly, a closed P(Z,−C)-valued function maps into F (Z,−C) and into G(Z,−C) if it is
additionally concave.

Secondly, a function f : X → F (Z, C) is closed if, and only if, it is lattice-lower-semicontinuous,
i.e.,

f (x) ⊇ lim inf
x→x̄

f (x) = sup
U∈NX

inf
x∈x̄+U

f (x)

where NX is a neighborhood base of 0 ∈ X and inf/sup are understood in (F (Z, C),⊇). This and
similar relationships are due to [24]. This also shows the perfect analog of the lattice constructions
to the scalar case. Of course, parallel remarks apply to closed functions mapping into F (Z,−C)
and lattice-upper-semicontinuity.

Proposition 4. Let f : X → P(Z, C) be T-translative. Then:
(a) f is convex if, and only if, A f is convex;
(b) f is subadditive if, and only if, A f is closed under addition;
(c) f is positively homogeneous if, and only if, A f is a cone;
(d) f is sublinear if, and only if, A f is a convex cone;
(e) f (0) 6= ∅ if, and only if, TZ ∩ A f 6= ∅;
(f) f (0) 6= Z if, and only if, TZ ∩ (X\A f ) 6= ∅;
(g) f (x) 6= ∅ for all x ∈ X if, and only if, X = A f + TZ;
(h) f (x) 6= Z for all x ∈ X if, and only if, X = (X\A f ) + TZ;
(i) f is B-monotone if, and only if, A f − B ⊆ A f ;



www.manaraa.com

Mathematics 2021, 9, 2270 9 of 33

(j) If Z is a topological linear space, then f is closed-valued if, and only if, A f is T-directionally
closed;

(k) If X, Z are topological linear spaces and T is continuous, then f is closed if, and only if,
A f is closed.

Proof. We shall indicate the proofs for (a), (j), and (k). The remaining parts are straightfor-
ward and therefore omitted:

(a) Assume that f is convex. Take x1, x2 ∈ A f . Then, (x1, 0), (x2, 0) ∈ graph f , and by
convexity, s(x1, 0)+ (1− s)(x2, 0) ∈ graph f for all s ∈ [0, 1]. This gives sx1 + (1− s)x2 ∈ A f
for all s ∈ [0, 1]; hence, A f is convex.

Conversely, if A f is convex and (x1, z1), (x2, z2) ∈ graph f , then:

0 ∈ f (x1)− {z1} = f (x1 − Tz1), 0 ∈ f (x2)− {z2} = f (x2 − Tz2)

by (4); hence, x1 − Tz1, x2 − Tz2 ∈ A f . The convexity of A f gives sx1 + (1 − s)x2 −
T(sz1 + (1− s)z2) ∈ A f for all s ∈ [0, 1], and again, the translativity property (4) yields
sz1 + (1− s)z2 ∈ f (sx1 + (1− s)x2), i.e., s(x1, z1) + (1− s)(x2, z2) ∈ graph f ;

(j) First, let f be closed-valued, and take x ∈ X, zλ → 0 with x + Tzλ ∈ A f for all
λ ∈ Λ. Then, 0 ∈ f (x + Tzλ) = f (x) + {zλ}; hence, −zλ ∈ f (x), and by the closedness,
0 ∈ f (x), which is x ∈ A f .

Conversely, let A f be T-directionally closed, and take zλ → z ∈ Z with zλ ∈ f (x)
for all λ ∈ Λ. Then, the T-transitivity of f implies x − Tzλ = x − Tz + T(z− zλ) ∈ A f ;
hence. x − Tz ∈ A f since A f is T-directionally closed and z − zλ → 0. This implies
0 ∈ f (x− Tz) = f (x) + {−z}, so z ∈ f (x), as desired;

(k) A closed function f : X → P(Z, C) has closed values and closed sublevel sets (see
Remark 7), so in particular, A f is closed. Conversely, if A f is closed and (xλ, zλ) ∈ graph f
with (xλ, zλ) → (x, z), then the T-translativity of f yields 0 ∈ f (xλ − Tzλ); hence,
xλ − Tzλ ∈ A f , which implies x− Tz ∈ A f by the closedness of A f and the continuity of
T. Consequently, again, by the T-translativity, (x, z) ∈ graph f .

As usual, Proposition 4 has a twin for P(Z,−C)-valued T-translative functions.

3.3. Dual Representation

Let X, Z be two locally convex, real topological linear spaces with topological duals
X∗, Z∗ and C ⊆ Z a closed convex cone. No interior point or pointedness assumption
is made, which means that C = {0} or a half-space is possible. By C+, we denote the
positive dual cone of C, i.e., C+ = {z∗ ∈ Z∗ | ∀z ∈ C : z∗(z) ≥ 0}. The first goal is a dual
representation of closed convex T-translative functions. It will be a consequence of the
Fenchel–Moreau (biconjugation) theorem for set-valued functions as first established in [25].
Here, the version in ([13], Theorem 5.8) is used.

The function S+
(x∗ ,z∗) : X → G(Z, C) for z∗ ∈ C+\{0} and x∗ ∈ X∗ is defined by:

S+
(x∗ ,z∗)(x) = {z ∈ Z | x∗(x) ≤ z∗(z)}.

It is half-space-valued since its values are superlevel sets of the continuous linear
function z∗. These functions are additive and positively homogenous; see ([25], Propo-
sition 6), ([13], Proposition 5.1). Such functions are called collinear. The abbreviation
H+(z∗) = S(x∗ ,z∗)(0) = {z ∈ Z | z∗(z) ≥ 0} is also used in the following.
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Let f : X → G(Z, C) be a proper, closed, convex function. The Fenchel–Moreau
theorem ([13], Theorem 5.8) states that it equals its biconjugate f ∗∗, which is defined via:

f ∗(x∗, z∗) = sup
x∈X

{
S(x∗ ,z∗)(x)−� f (x)

}
=
⋂

x∈X

(
S+
(x∗ ,z∗)(x)−� f (x)

)
and

f ∗∗(x) = sup
x∗∈X∗ ,

z∗∈C+\{0}

{
S+
(x∗ ,z∗)(x)−� f ∗(x∗, z∗)

}
=

⋂
x∗∈X∗ ,

z∗∈C+\{0}

(
S+
(x∗ ,z∗)(x)−� f ∗(x∗, z∗)

)
.

The operation −� is defined by A−� B = {z ∈ Z | B + {z} ⊆ A}. It can be under-
stood as an inf-residuation in the complete lattice G(Z, C) with respect to the addition
A⊕ B = cl {a+ b | a ∈ A, b ∈ B} (see ([13], Section 2.3)), and it replaces the usual difference
in vector spaces.

This type of set-valued conjugation shares most properties with the corresponding
one for extended real-valued functions. In particular:

• The conjugate of an infimal convolution of two functions is the sum of the two
conjugates (see ([25], Lemma 2), and ([26], Theorem 2.3.1 (ix)) for the scalar case);

• The conjugate of the set-valued indicator function IA(x) = C if x ∈ A and IA(x) = ∅
if x 6∈ A for A ⊆ X is the function (see ([25], Section 4.4 (A)), and ([26], p. 79) for the
scalar case).

(IA)
∗(x∗, z∗) =

⋂
x∈A

S+
(x∗ ,z∗)(x) =

⋂
x∈A
{z ∈ Z | x∗(x) ≤ z∗(z)}

= {z ∈ Z | σA(x∗) ≤ z∗(z)} (10)

which can be considered as a G(Z, C)-valued version of the ordinary support function σA(x∗) =
supx∈A x∗(x). Note that (IA)

∗(x∗, z∗) = ∅ for x∗ 6∈ dom σA = {y∗ ∈ X∗ | σA(y∗) < +∞};
this fact will be useful later on.

This sets the stage for an application of the representation (8) to determine the con-
jugate of a T-translative function f : it is the sum of the two conjugates of IA and JT . The
conjugate of JT can readily be computed as (see already ([13], Section 5.5)):

J∗T(x∗, z∗) =
⋂

x∈X

(
S+
(x∗ ,z∗)(x)−� JT(x)

)
=
⋂

u∈Z

(
S+
(x∗ ,z∗)(Tu)−� ({u}+ C)

)
=
⋂

u∈Z

{
z ∈ Z | {z + u}+ C ⊆ S+

(x∗ ,z∗)(Tu)
}

= {z ∈ Z | ∀u ∈ Z : z∗(z + u) ≥ x∗(Tu)}

=

{
z ∈ Z | z∗(z) ≥ sup

u∈Z
(T∗x∗ − z∗)(u)

}
=

{
H+(z∗) : z∗ = T∗x∗

∅ : z∗ 6= T∗x∗

Thus, for f = IA f � JT , one obtains:

f ∗(x∗, z∗) = I∗A f
(x∗, z∗) + J∗T(x∗, z∗) =


⋂

x∈A f

S+
(x∗ ,z∗)(x) : z∗ = T∗x∗

∅ : z∗ 6= T∗x∗
(11)

This translates to the following dual representation result.

Theorem 1. If f : X → G(Z, C) is a proper, closed, convex T-translative function, then:

∀x ∈ X : f (x) =
⋂

x∗∈dom σA f
T∗x∗∈C+\{0}

[
S+
(x∗ ,T∗x∗)(x)−� I∗A f

(x∗, T∗x∗)
]
. (12)
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If f is additionally sublinear, then A f is a closed convex cone and (12) simplifies to:

∀x ∈ X : f (x) =
⋂

x∗∈A−f
T∗x∗∈C+\{0}

S+
(x∗ ,T∗x∗)(x) (13)

where A−f = −
(

A f

)+
=
{

x∗ ∈ X∗ | ∀x ∈ A f : x∗(x) ≤ 0
}

.

Proof. This follows from the Fenchel–Moreau theorem ([13], Theorem 5.8), the represen-
tation of f as an infimal convolution (8) and the form of the conjugates of IA f , JT . The
restriction x∗ ∈ dom σA f is possible since (IA)

∗(x∗, z∗) = ∅ for x∗ 6∈ dom σA and:

S+
(x∗ ,T∗x∗)(x)−�∅ =

{
z ∈ Z | ∅ + {z} ⊆ S+

(x∗ ,T∗x∗)(x)
}
= Z;

thus, these x∗ can be dropped from the intersection in (12).
Note also that if A f is a closed convex cone, then I∗A f

(x∗, z∗) = H+(z∗) if x∗ ∈ A−f
and I∗A f

(x∗, z∗) = ∅ for x∗ 6∈ A−f . Moreover, S+
(x∗ ,z∗)(x)−�H+(z) = S+

(x∗ ,z∗)(x).

Recall the definition of the recession cone rec D = {y ∈ X | D + {y} ⊆ D} of a closed
convex set D ⊆ X, as well as the one of the barrier cone barr D = dom σD from Section 2.2.
The recession cone is the negative dual of the barrier cone, i.e., rec D = −(barr D)+ =
(barr D)− = {x ∈ X | ∀x∗ ∈ barr D : x∗(x) ≤ 0} (see ([27], Ch. 1, Sec. 5)).

If f is B-monotone with a convex cone B ⊆ X, then −B ⊆ rec A f by Proposition 4
(i); hence, dom σA f ⊆ cl (barr A f ) = (rec A f )

− ⊆ B+. Thus, the condition x∗ ∈ dom σA f

already covers x∗ ∈ B+. However, sometimes, it is useful to involve the latter condition.
As many other results, Theorem 1 has a twin for G(Z,−C)-valued concave functions.

Remark 8. (1) One has:

S+
(x∗ ,T∗x∗)(x) = {z ∈ Z | x∗(x) ≤ (T∗x∗)(z)} = {z ∈ Z | x∗(x) ≤ x∗(Tz)},

and it is easy to verify that the function x 7→ S+
(x∗ ,T∗x∗)(x) is T-translative. Thus, only T-translative

functions of type S+ enter (12). In particular, a sublinear T-translative function is the pointwise
supremum of such functions according to (13);

(2) The condition z∗ = T∗x∗ ∈ C+\{0} coupling the two dual variables transforms into a
time consistency condition for financial market models, which was pointed out in ([3], Sections 4
and 5.4) (see Example 4 and Sections 4.5 and 4.7 below). Thus, the general framework for set-valued
T-translative functions and the set-valued duality theory do exactly what they are supposed to do:
produce the right dual variables and appropriate dual descriptions. More details on time consistency
conditions within the framework of conditional risk measures can be found in [11,12];

(3) Formula (12) can be given a more traditional form via the following calculation. Using (10)
and the definition of S+, one obtains:

S+
(x∗ ,T∗x∗)(x)−� I∗A f

(x∗, T∗x∗) =
{

y ∈ Z | I∗A f
(x∗, T∗x∗) + {y} ⊆ S+

(x∗ ,T∗x∗)(x)
}

=
{

y ∈ Z |
{

z ∈ Z | σA f (x∗) ≤ (T∗x∗)(z)
}
+ {y} ⊆ {z ∈ Z | x∗(x) ≤ x∗(Tz)}

}
=
{

y ∈ Z |
{

z + y ∈ Z | σA f (x∗) ≤ (T∗x∗)(z + y− y)
}
⊆ {z ∈ Z | x∗(x) ≤ x∗(Tz)}

}
=
{

y ∈ Z |
{

z ∈ Z | σA f (x∗) ≤ (T∗x∗)(z− y)
}
⊆ {z ∈ Z | x∗(x) ≤ x∗(Tz)}

}
=
{

y ∈ Z | σA f (x∗) + x∗(Ty) ≤ x∗(Tz)
}
⊆ {z ∈ Z | x∗(x) ≤ x∗(Tz)}

=
{

y ∈ Z | x∗(x) ≤ σA f (x∗) + x∗(Ty)
}

.
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Thus, the knowledge of the (scalar) support function σA f for x∗ with T∗x∗ ∈ C+\{0} is
enough for (12).

Corollary 2. Let Z = IRm and T be given by Tz = ∑m
k=1 zkhk (the “standard example”). Then:

(T∗x∗)(z) = x∗
(

m

∑
i=1

zihi

)
=

m

∑
i=1

zix∗(hi);

thus, T∗x∗ can be identified with (x∗(h1), . . . , x∗(hm))T ∈ IRm and (12) becomes:

f (x) =
⋂

x∗∈dom σA f
T∗x∗∈C+\{0}

{
z ∈ Z | x∗(x) ≤ σA f (x∗) +

m

∑
i=1

zix∗(hi)

}
. (14)

Another special case deserves attention. Assume that there is z̄ ∈ C\{0} satisfying
z∗(z̄) > 0 for all z∗ ∈ C+\{0}. In this case, EC(z̄, 1) = {z∗ ∈ C+ | z∗(z̄) = 1} is a base of
the cone C+, i.e., every element z∗ ∈ C+\{0} has a unique representation z∗ = sb∗ with
s > 0 and b∗ ∈ EC(z̄, 1). In this case, intersections such as in (12) and (13) only need to run
over EC(z̄, 1) instead of over C+\{0}.

4. Set-Valued T-Translative Functions—Examples

In this section, a list of examples is provided starting with general versions and moving
to more concrete applications in finance and statistics. Among other things, it is shown
that projections on linear subspaces in Hilbert spaces are special instances of T-translative
functions, and a new proposal for lower and upper expectations for multivariate random
variables is given.

4.1. Aggregation Maps

Let X be a linear space, M ⊆ X a linear subspace, and D ⊆ X a nonempty set. The
function LD,M : X → P(M) defined by:

LD,M(x) = ({x} − D) ∩M

is called the aggregation map with respect to D.

Proposition 5. The aggregation map LD,M is translative with respect to the identity operator
idM : M → X on X restricted to M. Moreover, if B ⊆ X is a convex cone with 0 ∈ B satisfying
D− B ⊆ D, then LD,M maps into P(M, C) with C = B ∩M, and it holds:

ALD,M = {x ∈ X | 0 ∈ ({x} − D) ∩M} = D.

Finally, LD,M is convex if, and only if, D is convex.

Proof. Take z ∈ M, x ∈ X. Then:

LD,M(x + idM(z)) = ({x + z} − D) ∩M = {z}+ (({x} − D) ∩M).

Take z ∈ LD,M(x) and c ∈ C = B ∩M ⊆ M. Then, z + c ∈ M, as well as:

z + c ∈ ({x} − D) + B = {x} − (D− B) ⊆ {x} − D;

hence, z + c ∈ ({x} − D) ∩M = LD,M(x). The formula for ALD,M is obvious.
The last claim follows from Proposition 4 (a).
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Remark 9. Aggregation maps can be seen as just another way of writing T-translative functions:
Let Z be another linear space, T : Z → X an injective linear operator, and A ⊆ X. Set M = TZ.
Then, y ∈ ({x} − A) ∩ TZ if, and only if, there is z ∈ fA(x) such that y = Tz. Hence:

LA,M(x) = ({x} − A) ∩M = {y ∈ X | y = Tz, z ∈ fA(x)},

i.e., the aggregation map LA,M can be understood as a superposition of the T-translative function
fA and T defined by (T fA)(x) = {Tz | z ∈ fA(x)}.

On the other hand, the inverse T−1 : TZ → Z exists since T is injective, and one can write:

fA(x) =
{

T−1y | y ∈ LA,TZ(x) = ({x} − A) ∩ TZ
}

,

i.e., fA can be seen as the superposition of the aggregation map LA,TZ(x) and T−1.

A (linear) scalarization very often can be identified with the projection on a one-
dimensional subspace: a standard example is the expected value of a random variable
in L2, which is the projection of it onto the one-dimensional subspace of constants: the
expected value satisfies the translativity property: E[X + s1I] = E[X] + s. Clearly, such
a projection comes with a loss of information, and it therefore makes sense to ask for a
similar procedure with a more than one-dimensional subspace as the image space: This
would still “simplify” the original object, but retain more information. A decision maker
then has to decide “how much scalarization” is needed. It is worth noting that a “total”
scalarization leads to a total order, whereas a more general aggregation map may preserve
some non-totalness of the original order relation in X, which can be a desirable feature.

The remaining part of this section deals with the dual representation of aggregation
maps. Therefore, it is now assumed that X is a separated locally convex space that forms a
dual pair with its topological dual X∗, as in Section 3.3. Let M ⊆ X be a closed subspace
supplied with the topology induced by X. Then, the embedding operator T : M → X is
continuous. By Proposition 4 (a), (k), LD,M : X → P(M) is closed and convex if, and only
if, the set:

ALD,M = {x ∈ X | 0 ∈ ({x} − D) ∩M} = D

is closed and convex. In this case, the recession cone rec D is a closed convex cone with
D− (−rec D) ⊆ D, i.e., LD,M maps into G(M, C) with C = (−rec D) ∩M by Proposition 2
(b).

For the embedding operator T : M→ X, the element T∗x∗ ∈ M∗ is the restriction of
the continuous linear function x∗ ∈ X∗ to the linear subspace M since one has:

∀x∗ ∈ X∗, ∀z ∈ M : (T∗x∗)(z) = x∗(Tz) = x∗(z).

Moreover, if x∗ ∈ dom σD = barr D ⊆ (−rec D)+, then (T∗x∗)(z) = x∗(z) ≥ 0 for
all z ∈ C = (−rec D) ∩ M; hence, T∗x∗ ∈ C+. Finally, T∗x∗ 6= 0 holds if, and only if,
x∗ 6∈ ker T∗ = {x∗ ∈ X∗ | ∀z ∈ M : x∗(z) = 0} =: M⊥. The set M⊥ is also called the
annihilator of M in X∗ (see ([16], 5.106 Definition)).

Thus, if D is closed and convex and LD,M is proper, one has:

∀x ∈ X : LD,M(x) =
⋂

x∗∈(dom σD)\M⊥

[
S+
(x∗ ,T∗x∗)(x)−� I∗D(x∗, T∗x∗)

]
Moreover, one has from (10):

I∗D(x∗, T∗x∗) = {z ∈ M | σD(x∗) ≤ x∗(z)},

and by Remark 8, (3),

S+
(x∗ ,T∗x∗)(x)−� I∗D(x∗, T∗x∗) = {y ∈ M | x∗(x) ≤ x∗(y) + σD(x∗)}
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Altogether, this gives the dual representation:

∀x ∈ X : LD,M(x) =
⋂

x∗∈(barr D)\M⊥
{z ∈ M | x∗(x)− σD(x∗) ≤ x∗(z)}. (15)

Note that, in contrast to the general case, only one dual variable x∗ appears in these
formulas due to the fact that T is a simple embedding operator.

If D is a closed convex cone, then LD,M becomes sublinear, and one has σD(x∗) = 0
for x∗ ∈ D− = (−D)+, σD(x∗) = +∞ for x∗ 6∈ D−; hence:

∀x ∈ X : LD,M(x) =
⋂

x∗∈D−\M⊥
{z ∈ M | x∗(x) ≤ x∗(z)} =

⋂
x∗∈D−\M⊥

S+
(x∗ ,x∗)(x),

thus LD,M is the supremum of collinear functions, which are the set-valued replacements
of scalar linear functions.

Example 1. This example is another special case of an aggregation map. It was used in [8] as a
base model for risk measures with multiple eligible assets. In this model, a vector subspace V ⊆ L0

d
is considered with another subspace M ⊆ V where the elements of M are considered as payoffs of
trading strategies eligible for risk compensation. If A ⊆ V is a set of financial position acceptable
for a financial institution, the set:

L−A,M(−X) = {Z ∈ M | X + Z ∈ A} = ({−X}+ A) ∩M

is the collection of all eligible payoffs Z, which make the overall position X + Z acceptable. If a
(linear) pricing functional π : M→ IR is given, then the function:

$A,M,π(X) = inf{π(Z) | X + Z ∈ A}

was defined as an extended real-valued risk measure on V in ([17], p. 590), ([8], Formula (5)). This
model already appeared in [28] and also in [29]. It has intimate relationships with good deal pricing,
as outlined, e.g., in [29].

4.2. Projections and Conditional Expectations

Let X be a Hilbert space, M ⊆ X a closed subspace, and M⊥ the orthogonal comple-
ment of M in X. Then, with D = M⊥ (with the notation from the previous example):

LM⊥ ,M(x) = {ProjM(x)},

i.e., LM⊥ ,M(x) contains a single element, which is the projection xM of x onto M. Indeed, if
z ∈ LM⊥ ,M(x), then:

z ∈ M as well as z ∈ {x} −M⊥ = {xM + xM⊥} −M⊥ ⊆ {xM}+ M⊥

which implies z − xM ∈ M ∩ M⊥; hence, z = xM. In this case, D − B ⊆ D means
M⊥ − B ⊆ M⊥; hence, B ⊆ M⊥, and C = B∩M = {0} is the only possibility; thus, LM⊥ ,M
maps into G(M, {0}), and one has ALM⊥ ,M

= M⊥. This example also shows that the case
C = {0} can be useful and should not be ruled out.

Since X and M are Hilbert spaces, continuous linear functionals over them can be
identified with elements of X or M itself. The relevant collinear functions are:{

S+
(x∗ ,z∗) | x∗ ∈ X, z∗ ∈ M

}
.

Since ALM⊥ ,M
= M⊥, it follows:
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I∗M⊥(x∗, z∗) = sup
x∈M⊥

S(x∗ ,z∗)(x) =
⋂

x∈M⊥
{z ∈ M | x∗(x) ≤ z∗(z)}

=
{

z ∈ M | ∀x ∈ M⊥ : x∗(x) ≤ z∗(z)
}

for x∗ ∈ X, z∗ ∈ M. Since M⊥ is a linear subspace, this yields I∗M⊥(x∗, z∗) = ∅ for x∗ 6∈ M;
hence, also, L∗M⊥ ,M(x∗, z∗) = ∅ for x∗ 6∈ M, and I∗M⊥(x∗, z∗) = H+(z∗) for x∗ ∈ M.

Since T is the embedding of M into X, T∗ becomes the projection from X onto M. Con-
sequently, if x∗ ∈ M, we find J∗T(x∗, z∗) = H+(x∗) for z∗ = T∗x∗ = x∗ and J∗T(x∗, z∗) = ∅
whenever z∗ 6= x∗. Therefore,

∀x∗ ∈ M : L∗M⊥ ,M(x∗, x∗) = H+(x∗)

and L∗M⊥ ,M(x∗, z∗) = ∅ if x∗ 6= z∗. Theorem 1 now produces:

∀x ∈ X : LM⊥ ,M(x) =
⋂

x∗∈M\{0}

[
S(x∗ ,x∗)(x)−�H+(x∗)

]
=

⋂
x∗∈M\{0}

S(x∗ ,x∗)(x)

= {z ∈ M | ∀x∗ ∈ M : x∗(x) ≤ x∗(z)}.

Since M is a linear subspace, z ∈ LM⊥ ,M(x) satisfies x∗(x) = x∗(z) for all x∗ ∈ M.
This is the dual characterization for the projection z = ProjM(x) and also confirms that this
projection is unique.

Conditional expectations are also discussed in this section since they can be seen, at
least in the L2-space, as a special type of projections.

Example 2. Let (Ω,A, P) be a probability space andB a sub-sigma-algebra ofA. Let 1 ≤ p < +∞.
Then, Lp

d(Ω,B, P) is a closed linear subspace of Lp
d(Ω,A, P). In this example, the abbreviations

Lp
d(A), Lp

d(B) are used. Let T : Lp
d(B) → Lp

d(A) be the embedding, which is a bounded linear
operator. Then:

• The (componentwise) conditional expectation E[· | B] : Lp
d(A)→ Lp

d(B) is a T-translative
linear operator due to linearity and E[Z | B] = Z for Z ∈ Lp

d(B); if p = 2, it is a special case
of the projection operator discussed above;

• In fact, the conditional expectation considered as a function from Lq
d(A) to Lq

d(B) with
p−1 + q−1 = 1 or q = ∞ for p = 1 is the adjoint of the embedding T of Lp

d(B) into Lp
d(A),

i.e., T∗ = E[· | B] : Lq
d(A)→ Lq

d(B) by definition; one has:

E[YT(TZ)] = E[E[Y | B]TZ]

for all Y ∈ Lq
d(A), Z ∈ Lp

d(B) according to the definition of the conditional expectation.

In such a situation, functions of the type S+
(x∗ ,T∗x∗) (see Remark 8) have the following form:

S+
(Y,E[Y|B])(X) =

{
Z ∈ Lp

d(B) | E[Y
TX] ≤ E[E[Y | B]TZ]

}
,

so they produce half-spaces in Lp
d(B) as images with normal E[Y | B].

These ideas, combined with the procedures discussed in Section 4.5, form the building
block for dual representation results for conditional risk measures as given in [11,12].

4.3. Standard Example and Scalar Translative Functions

The following special case occurs very often in applications: Z = IRm, IRm
+ ⊆ C ⊂ IRm,{

h1, . . . , hm} ⊆ X a set of m linearly independent elements and T : IRm → X defined by
Tz = ∑m

k=1 zkhk.
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In some financial applications with X = Lp
d , the elements h1, . . . , hm can be assets

eligible for hedging or risk compensation. This standard example also covers the case of
several, potentially defaultable securities as eligible assets. Such a case for m = 1 was
discussed in [9,20]. The case m > 1 for risk-free eligible assets was treated in [2,3].

Example 3. A special case is the following one, which is well studied and has many applications,
not only in finance. Let m = 1, h1 = h ∈ X\{0} be a fixed, nonzero element of X and M =
{th | t ∈ IR} the one-dimensional subspace generated by h. Then:

LD,M(x) = {sh | sh ∈ {x} − D, s ∈ IR} = {sh | x− sh ∈ D, s ∈ IR}.

Assume D − IR+h ⊆ D, i.e., D is (T, C)-translative for T : IR → X with Ts = sh and
C = IR+. Then, sh ∈ {x} − D and t ≥ 0 imply:

(s + t)h ∈ {x + th} − D ⊆ {x} − D;

hence, LD,M(x) is either empty, equal to M, or of the form (τD,h(x), ∞)h, [τD,h(x), ∞)h where:

τD,h(x) = inf{s ∈ IR | x− sh ∈ D}.

Setting τD,h(x) = +∞ if LD,M(x) = ∅ and τD,h(x) = −∞ if LD,M(x) = M, one obtains
an h-translative extended real-valued function, i.e.,

∀x ∈ X, ∀s ∈ IR : τD,h(x + sh) = τD,h(x) + s.

Such functions have a vast number of applications in vector optimization and multicriteria
decision making, idempotent analysis, statistics, finance, and economics (see, e.g., [30]). In fact, the
authors realized already in 2001/2002 the intimate relationship between translative scalarization
functionals used in vector optimization [31] and risk measures as defined in [18,32].

Note that the case (τD,h(x), ∞)h above is excluded if D is assumed to be T-directionally closed
for the simple linear operator T : IR→ X defined by Ts = sh for s ∈ IR. In this case, D is also said
to be h-directionally closed: this concept was introduced by Schrage [33] and one of the authors [30].
If a set D is not h-directionally closed, one can add all points x ∈ X such that there is a sequence
{sn}n∈IN in IR with limn→∞ sn = 0 such that x + snh ∈ D for all n ∈ IN, and obtain a set dclh D,
which is called the h-directional closure of D. It was shown in [30,33] that this indeed is a closure
operation, which is weaker (i.e., smaller in general) than the algebraic closure of D.

In particular, if D = {x ∈ X | x∗(x) ≤ 0} for some x∗ ∈ X∗ with x∗(h) = 1, then:

τD,h(x) = inf{s ∈ IR | x∗(x− sh) ≤ 0} = x∗(x).

4.4. Subhedging and Superhedging Sets

Let X ∈ Lp
d be a contingent claim and C ⊆ L0

d the set of portfolios in the market, which
are available at terminal time by trading in the market starting from the zero portfolio at
initial time. The sets:

SupH(X) =
{

z ∈ IRd | −X + z1I ∈ C
}

,

SubH(X) =
{

z ∈ IRd | X− z1I ∈ C
}

are the collections of superhedging and subhedging portfolios (at initial time). The inter-
pretation is that z ∈ SupH(X) means to sell X at initial time, obtain z, trade in the market
with initial portfolio z, and become solvent at terminal time; similarly, z ∈ SubH(X) means
to buy X at initial time by delivering z, trade in the market with zero initial portfolio, and
become solvent at terminal time.

Assume C0 ⊆ IRd is a closed convex cone including the initial portfolios, which are
available in the market at zero costs, i.e., C0 is the solvency cone at initial time and satisfies
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C01I ⊆ C. Then, SupH(X) + C0 ⊆ SupH(X) and SubH(X) + (−C0) ⊆ SubH(X), i.e., the
functions SupH and SubH map L0

d into P(IRd, C0) and P(IRd,−C0), respectively. Moreover,
SubH(X) = −SupH(−X) and both SupH and SubH satisfy (4) with Tz = z1I.

If 0 ∈ SupH(X), then X is a terminal payoff, which can be achieved by trading in
the market starting with the zero portfolio, while 0 ∈ SubH(X) means that X is a solvent
position at terminal time, i.e., ASupH = −C, ASubH = C.

Dual representation results for functions such as SupH are known as super-replication
theorems in the literature. Examples are ([5], Theorem 3.1), ([7], Theorem 4.1), and ([34],
Theorem 4.4). Such theorems are special instances of set-valued duality results, which was
pointed out in ([3], Sec. 5.4).

Example 4. The function SupH is a T-translative function with Tz = z1I and ASupH = −C. Let:

C =
{

Z ∈ L1
d | Z ∈ C01I + C1 P− a.s.

}
with a closed convex cone IRd

+ ⊆ C0 ⊆ IRd and a random closed convex cone C1 with IRd
+ ⊆ C1(ω)

for all ω ∈ Ω. Then, C is a convex cone, and if it is closed (e.g., under some no-arbitrage type
condition), SupH is a closed sublinear T-translative function, which has the dual representation
(see (13)):

SupH(X) =
⋂

Y∈C+
v=E[Y]∈C+

0 \{0}

S+
(Y,v)(X) =

⋂
(Y,v)∈YSupH

{
z ∈ IRd | E[Y>X] ≤ v>z

}

where YSupH =
{
(Y, v) ∈ L∞

d × IRd | Y ∈ C+
1 P-a.s., v = E[Y] ∈ C+

0

}
. The pair (Y, v) corre-

sponds to a consistent price process as used in [5,7] for the one-period market model (C0, C1). More
general versions are of course possible; see already ([3], Section 5.4).

4.5. Set-Valued Risk Measures

The following definition is slightly more general than the ones given in the literature
cited below.

Definition 6. Let p ∈ {0} ∪ [1, ∞] and T : IRm → Lp
d be a linear operator. A function R : Lp

d →
P(IRm, C) is called a (set-valued) risk measure if:

(R0) It is finite at zero: R(0) 6∈ {IRm, ∅};
(R1) It is (−T)-translative: R(X + Tz) = R(X) + {−z} for X ∈ Lp

d , z ∈ IRm;
(R2) It is −(Lp

d)+-monotone: X2 − X1 ∈ (Lp
d)+ implies R(X2) ⊇ R(X1).

Such risk measures were introduced and studied in [2,3] with the main motivation
that risk can be compensated for by several eligible assets (and not just cash in a fixed
currency, which produces the usual “cash-additivity” interpretation of (R1)). The same
motivation appeared in [4], which did not use the complete lattice framework, but was
actually the first to define set-valued risk measures.

The presence of the operator T makes it possible to include arbitrary eligible assets in
the line of the arguments given in [8,29] (for scalar risk measures). If H1, . . . , Hm ∈ Lp

d are
eligible, then Tz = ∑m

i=1 zi Hi. The traditional case is Hi = bi1I with bi ∈ IRd, i = 1, . . . , m,
linearly independent, where the case of unit vector bi = ei was the one considered in [4].

Finally, convexity and sublinearity requirements as given in Definition 3 lead to convex
and sublinear (traditionally called “coherent”) set-valued risk measures.

Dual representation results can be obtained as follows. Assume p ∈ [1, ∞] (com-
pare Section 2.2 for dual Lp

d-spaces). Let T : IRm → Lp
d be given by Tz = ∑ zi Hi where

H1, . . . , Hm ∈ Lp
d are (potentially defaultable) securities eligible for risk compensation or

risk hedging.
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First, the monotonicity (R2) is equivalent to AR + (Lp
d)+ ⊆ AR (see Proposition 4 (i))

and hence implies Y ∈ −(Lq
d)+ (see the discussion after the proof of Theorem 1).

Next, Corollary 2 gives:

(T∗Y)(z) = E
[
∑ ziY>Hi

]
= ∑ ziE

[
Y>Hi

]
Defining an d×m-matrix by:

H =
(

H1, . . . , Hm
)
=

 H1
1 · · · Hm

1
...

...
H1

d · · · Hm
d


one obtains (T∗Y)(z) = E

[
H>Y

]>z; thus, T∗Y can be identified with E
[
H>Y

]
∈ IRm. Since

R is (−T)-translative, the dual representation Formula (12) in Theorem 1 asks for:

−T∗Y = −E
[

H>Y
]
∈ C+\{0}.

In order to prepare a scenario-based version, the sign of the dual variable Y is switched,
which is also in accordance with an interpretation as consistent price processes later on.
Define YR(H, C) =

{
(Y, v) ∈ (−barr AR)× C+\{0} | v = E

[
H>Y

]}
. This set is a convex

cone, and since T∗Y = E
[
H>Y

]
, one has:

YR(H, C) ⊆ graph T∗ =
{
(Y, v) ∈ Lq

d × IRm | v = T∗Y
}

.

The dual representation Formula (12) in Theorem 1 yields:

R(X) =
⋂

Y∈−barr AR
v=E[H>Y]∈C+\{0}

[
S+
(−Y,v)(X)−� I∗AR

(−Y, v)
]
=

⋂
(Y,v)∈YR(H,C)

[
S+
(−Y,v)(X)−� I∗AR

(−Y, v)
]

for a proper closed convex risk measure R : Lp
d → G(IR

m, C).
In a final step, this formula will be transferred into a scenario-based version, i.e., a

formula with probability measures as dual variables as in [18] (for scalar risk measures)
and in [2,3] (for set-valued ones).

Take Y ∈ (Lq
d)+, and define wi = E[Yi], as well as Vi =

1
wi

Yi for wi > 0 and Vi ∈ (Lq
d)+

with E[Vi] = 1 if wi = 0, i = 1, . . . , d. Then, Vi is the density function of a probability
measure Qi with Vi =

dQi
dP for i = 1, . . . , d. One can now write Y = diag(w) dQ

dP .
This gives:

E[Y>X] = E
[(

diag(w)
dQ
dP

)>
X

]
= w>EQ[X]

where EQ[X] = (EQ1 [X1], . . . ,EQd [Xd])
> ∈ IRd. On the other hand,

E[H>Y] = E
[

H>
(

diag(w)
dQ
dP

)]
=

 wTEQ[H1]
...

wTEQ[Hm]

 ∈ IRm.

Defining:

EQ[H] =
(
EQ[H1], . . . ,EQ[Hm]

)
=

 EQ1 [H1
1 ] · · · EQ1 [Hm

1 ]
...

...
EQd [H1

d ] · · · EQd [Hm
d ]

 ∈ IRd×m
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one obtains E[H>Y] = EQ[H]>w. The following lemma provides the one-to-one corre-
spondence between pairs (Y, v) and (Q, w).

Lemma 1. (a) Let Y ∈ (Lq
d)+ and v = E[H>Y] ∈ C+\{0}. Then, there is a vector probability

measure Q whose components are absolutely continuous with respect to P and w ∈ IRd
+ such that

EQ[H]>w ∈ C+\{0} and:

∀X ∈ Lp
d : S+

(−Y,v)(X) =
{

z ∈ IRm | E[−Y>X] ≤ v>z
}

=
{

z ∈ IRm | w>EQ[−X] ≤ w>EQ[H]z
}
=: E+

H,Q,w(−X).

(b) Let Q be a vector probability measure whose components are absolutely continuous with
respect to P and w ∈ IRd

+ such that EQ[H]>w ∈ C+\{0}. Then, there are Y ∈ (Lq
d)+ and

v ∈ C+\{0} with v = E[H>Y] such that S+
(−Y,v)(X) = E+

H,Q,w(−X) for all X ∈ Lp
d .

Proof. (a) See the above discussion. (b) Set Y = diag(w) dQ
dP and v = E[H>Y].

Remark 10. The set:

E+
H,Q,w(X) :=

{
z ∈ IRm | w>EQ[X] ≤ w>EQ[H]z

}
clearly is a generalization of the upper w-expectation in Section 4.7 below and shares most of its
properties; its values are subsets of IRm with m ≤ d. A more thorough discussion of this new concept
will be performed elsewhere.

The scenario-based dual representation reads as follows. Defining:

WR(H, C) =
{
(Q, w) ∈ M1

d(P)× IRd | diag(w)
dQ
dP
∈ −barr AR, EQ[H]>w ∈ C+\{0}

}
one obtains the following dual representation result.

Corollary 3. If R : Lp
d → G(IR

m, C) is a proper closed convex risk measure, then there is a penalty
function αR : WR(H, C)→ G(IRm, C) such that:

∀X ∈ Lp
d : R(X) =

⋂
(Q,w)∈WR(H,C)

[
E+

H,Q,w(−X)−� α(Q, w)
]
.

In particular, the penalty function can be chosen as:

αR,min(Q, w) =
⋂

Z∈AR

E+
H,Q,w(−Z).

If R is additionally sublinear, then:

∀X ∈ Lp
d : R(X) =

⋂
(Q,w)∈WR(H,C)

E+
H,Q,w(−X).

Remark 11. Special Case I: If H j = bj1I with bj ∈ IRd, j = 1, . . . , m, then H = B1I with a matrix
B ∈ IRd×m and EQ[H] = B, v = BTE[Y]. The choice bj = ej, the j-th unit vector, leads to (a more
general version of) situations already considered in [4].

Special Case II: If m = d and H j = ej1I for j = 1, . . . , d, then B becomes the d× d identity
matrix. Moreover, in this case, E+

H,Q,w(X) =
{

z ∈ IRm | w>EQ[X] ≤ w>z
}

, which is the upper
(Q, w)-expectation defined in Section 4.7 below.
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4.6. Liquidation Risk Measures

The theory of scalar risk measures in the spirit of [18,32] includes the implicit assump-
tion that multi-asset positions and portfolios are evaluated in monetary units (or units of
a risk-free numéraire). Thus, the risk evaluation takes place at the level of (univariate)
monetary positions, not at the level of actual (multivariate) portfolios. Moreover, even
the single assets in a portfolio are usually represented by a monetary value instead of
accounted for in “physical units” ([5]). Thus, an at least virtual liquidation usually precedes
the risk evaluation. The following model makes this procedure transparent and, at the
same time, allows for liquidation into more than one asset, which are not assumed to be
risk-free. The risk evaluation then takes place in terms of m cash-like assets, which could
indeed be thought of as currencies.

Let S : IRm → Lp
m be an injective linear operator and R : Lp

m → P(IRm, IRm
+) a (−S)-

translative risk measure, i.e., R satisfies (R0), (R1), (R2) in Definition 6 with T replaced
by S. Moreover, let T : Lp

m → Lp
d be an injective linear operator and C ⊆ Lp

d a nonempty
set. Typically, C is generated by solvency sets of a (convex or conic) market model. The
(set-valued) function fC : Lp

d → P(Lp
m) defined by (see (6)):

fC(X) =
{

Z ∈ Lp
m | X− TZ ∈ C

}
is called the liquidation map associated with C and T, which of course is T-translative:

∀Z ∈ Lp
m, ∀X ∈ Lp : fC(X + TZ) = fC(X) + {Z}

The function RC : Lp
d → P(IR

m, IRm
+) defined by:

RC(X) = inf{R(Z) | Z ∈ fC(X)} =
⋃{

R(Z) | Z ∈ Lp
m, X− TZ ∈ C

}
is called the m-liquidation risk measure with respect to C. Versions with values in

F (IRm, IRm
+) and G(IRm, IRm

+), respectively, are obtained by taking the corresponding infima.

Proposition 6. The m-liquidation risk measure RC satisfies (R1) with respect to T ◦ S. It satisfies
(R2) whenever C + (Lp

d)+ ⊆ C, and one has RC(0) 6= ∅ whenever T(dom R) ∩ −C 6= ∅. Its
acceptance set is:

AC =
{

X ∈ Lp
d | 0 ∈ RC(X)

}
= TAR + C.

Proof. (R1) Indeed, one has for X ∈ Lp
d , z ∈ IRm:

RC(X + (T ◦ S)(z)) =
⋃{

R(Z) | Z ∈ Lp
m, X + (T ◦ S)(z)− TZ ∈ C

}
=
⋃{

R(Z− Sz)− {z} | Z ∈ Lp
m, X− T(Z− Sz) ∈ C

}
=
⋃{

R(Z− Sz) | Z− Sz ∈ Lp
m, X− T(Z− Sz) ∈ C

}
− {z}

= RC(X)− {z}.

(R2) The assumption to C implies {X1} − C ⊆ {X2} − C whenever X2 − X1 ∈ (Lp
d)+.

In this case,

RC(X2) =
⋃{

R(Z) | Z ∈ Lp
m, TZ ∈ {X2} − C

}
⊇
⋃{

R(Z) | Z ∈ Lp
m, TZ ∈ {X1} − C

}
= RC(X1).

The next claim directly follows from the definition of RC(0) and the assumption.
Finally, Y ∈ AR and X ∈ C imply:

RC(TY + X) =
⋃{

R(Z) | Z ∈ Lp
m, TY + X− TZ ∈ C

}
⊇ R(Y) 3 0,
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and conversely, 0 ∈ RC(X) implies:

∃Z ∈ Lp
m : X− TZ ∈ C, 0 ∈ R(Z)

which immediately produces X ∈ TAR + C.

It can happen that RC(0) = IRm even if R is finite at 0 ∈ Lp
m.

A different and useful representation of RC , in particular with dual representations
in view, can be obtained as follows. Define the functions RT : Lp

d → P(IR
m, IRm

+) and
IC : Lp

d → P(IR
m, IRm

+) by:

RT(X) =

{
R(Z) : if X = TZ for Z ∈ Lp

m

∅ : otherwise
as well as IC(X) =

{
IRm

+ : X ∈ C
∅ : X 6∈ C

The function IC is the set-valued indicator function of C (see [25]).

Proposition 7. The m-liquidation risk measure RC is the infimal convolution of RT and IC , i.e.,

∀X ∈ Lp
d : RC(X) = (RT � IC)(X). (16)

Proof. By definition,

(RT � IC)(X) = inf
{

RT(X1) + IC(X2) | X1 + X2 = X
}

.

For RT(X1) + IC(X2) to be nonempty, one must have X1 = TZ for Z ∈ Lp
m and

X2 = X− X1 = X− TZ ∈ C, and in this case:

(RT � IC)(X) = inf
{

R(Z) | Z ∈ Lp
m, X− TZ ∈ C

}
which is the definition of RC .

Remark 12. (1) The case of m risk-free assets (e.g., m currency accounts) can be modeled by
Sz = ∑m

i=1 zibi1I with m linearly independent vectors bi ∈ IRd. In particular, the unit vectors
bi = ei, i = 1, . . . , m, can be used as, for example, already in [4] in which case the first m
components of a portfolio vector in IRd represent the currencies eligible for risk compensation. The
operator T : Lp

m → Lp
d just adds d−m zero components to Z ∈ Lp

m, i.e.,

TZ = (Z1, . . . , Zm, 0, . . . , 0)T .

An ad hoc procedure of this type was also used in [4];
(2) A special case for C is a one-period market model with proportional transaction costs in the

form C = C01I + C1 where C0 ⊆ IRd, C1 ⊆ Lp
d are closed convex sets, which comprise the solvent

positions at initial and terminal time, respectively (see [34] for this type of market model and [5,7] for
the case when C0 and C1 are polyhedral convex cones, i.e., conical market models). Since in this case:

IC = IC01I� IC1 ,

it is possible to further decompose the representation (16). This idea is due to C. Ararat and was
used in [35];

(3) Finally, if m = 1 and Sz = zb1I with z ∈ IR and b ∈ IRd, then the case of scalar risk
measures for multivariate positions can be recovered.

4.7. Set-Valued Lower and Upper Expectations

In the book ([36], p. 254ff), Huber discussed the notion of lower and upper expectations
being infima and suprema of expected values over sets of probability measures (along with
lower and upper probabilities). His proof for a “dual representation” became a blueprint
for similar results for coherent risk measures [18].
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How do we generalize these notions to the multivariate situation? A new proposal is
as follows. Let Q be a set of d-dimensional vector probability measures on a measurable

space (Ω,F ) and X ∈ L0
d such that EQ[X] =

(
EQ1 [X1], . . . ,EQd [Xd]

)> exists for all Q ∈ Q.
Moreover, let C ⊆ IRd be a nontrivial (i.e., C 6∈ {∅, IRd}) closed convex cone with positive
dual cone C+ =

{
v ∈ IRd | ∀z ∈ C : vTz ≥ 0

}
. For w ∈ C+\{0}, Q ∈ Q, define the sets:

E+
Q,w(X) =

{
z ∈ IRd ∣∣ w>EQ[X] ≤ w>z

}
E−Q,w(X) =

{
z ∈ IRd ∣∣ w>z ≤ w>EQ[X]

}
which we call the upper and lower (Q, w)-expectation of X, respectively. Set:

E+(X) =
⋂

w∈C+\{0}, Q∈Q
E+

Q,w(X) and E−(X) =
⋂

w∈C+\{0}, Q∈Q
E−Q,w(X).

Straightforwardly, one obtains for all (Q, w) ∈ Q× C+\{0}:

E+
Q,w(X) = EQ[X] + H+(w) and E−Q,w(X) = EQ[X] + H+(−w)

where H+(w) =
{

z ∈ IRd | w>z ≥ 0
}

.

The set-valued function E+ is called the upper expectation of X, whereas E− is called
the lower expectation with respect to Q. Of course, “upper” and “lower” refer to the
order generated by the cone C (see Remark 1). It is not difficult to verify that E+ maps
in G(IRm, C) and is sublinear with respect to ⊇, whereas E− maps into G(IRm,−C) and is
superlinear with respect to ⊆. Moreover, E+(X) = −E−(−X), which corresponds to ([36],
p. 254, (2.3)). Finally, E+(−X) satisfies the requirements of a (sublinear) risk measure in
Section 4.5, and its definition can be considered as its dual representation; this is stated in
the following result.

Proposition 8. (a) E+ maps into G(IRd, C), is T-translative for Tz = z1I, and sublinear and
K-monotone with respect to each random closed convex cone K such that EQ[X] ∈ C for all Q ∈ Q
whenever X ∈ K (pointwise);

(b) E− maps into G(IRd,−C), is T-translative for Tz = z1I, and superlinear and K-monotone
with respect to each random closed convex cone K such that EQ[X] ∈ C for all Q ∈ Q whenever
X ∈ K (pointwise).

Proof. (a) Everything is a direct consequence of the definition and the assumption. In
particular, if X2 − X1 ∈ K, then EQ[X2 − X1] ∈ C; hence, EQ[X1] + C ⊇ EQ[X2] + C and:

E+
Q,w(X1) = EQ[X1] + H+(w) ⊇ EQ[X2] + H+(w) = E+

Q,w(X2).

since C + H+(w) = H+(w) for all w ∈ C+. Taking the intersections over (Q, w) ∈
Q× C+\{0} on both sides of the inclusion, one obtains E+(X1) ⊇ E+(X2);

(b) Completely parallel.

Remark 13. (1) The monotonicity assumption can be understood as a time consistency condition:
if X is non-negative at terminal time (i.e., X ∈ K), then EQ[X] is non-negative at initial time (i.e.,
EQ[X] ∈ C). Since there are many options for preorders in dimensions ≥ 2 (rather than essentially
only one in Dimension 1), “non-negative” has to be understood with respect to preorders generated
by convex cones;

(2) The definitions of E+, E− are essentially different from the ones in [23] and, in con-
trast to the latter, maintain many features of the scalar versions. For example, a relation such as
E+(X) = −E−(−X) is not true for the concepts from [23];

(3) While in this section, a direct approach is given, Section 4.5 above already includes and
motivates a further generalization of upper/lower expectations to the case E+(X), E−(X) ⊆ IRm
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with m ≤ d. Such a distinction is of course not necessary for univariate positions, but it can
be vital if IRd-valued positions are subject to an evaluation in fewer than d eligible instruments,
e.g., currencies.

Clearly, the definition of E+(X) can be seen as a dual representation. A primal version
is obtained by looking at:

AE+ =
{

X ∈ L0
d | 0 ∈ E+(X)

}
=
{

X ∈ L0
d | ∀w ∈ C+\{0}, ∀Q ∈ Q : 0 ∈ E+

Q,w(X)
}

=
{

X ∈ L0
d | ∀w ∈ C+\{0}, ∀Q ∈ Q : w>EQ[X] ≤ 0

}
=
{

X ∈ L0
d | ∀Q ∈ Q : EQ[X] ∈ −C

}
where the bipolar theorem for the closed convex cone C is used. One obtains E+ = fAE+

with Proposition 2 (a), where T : IRd → L0
d is defined by Tz = z1I (see Proposition 8).

In particular, one obtains:

E+(X) = fAE+
(X) =

{
z ∈ IRd | X− z1I ∈ AE+

}
=
{

z ∈ IRd | ∀Q ∈ Q : EQ[X− z1I] ∈ −C
}

=
{

z ∈ IRd | ∀Q ∈ Q : z ∈
{
EQ[X]

}
+ C

}
=

⋂
Q∈Q

({
EQ[X]

}
+ C

)
.

One may note that this corresponds to the (trivial) E[X] = inf{r ∈ IR | E[X] ≤ r} for
d = 1, C = IR+, Q = {P}. Thus, upper expectations are meaningful substitutes for the
(vector) expectation in the multivariate case since there is no reasonable way to use the
infimum in the preordered vector space (IRd,≤C) (and very often, it does not even exist).
The lower expectation corresponds to the univariate E[X] = sup{r ∈ IR | r ≤ E[X]}.

4.8. Set-Valued Quantiles

The notation from Section 2.2 is used. Moreover, let C ⊆ IRd be a closed convex cone,
C+ its positive dual, and X ∈ L0

d. The function FX,C : IRd → [0, 1] defined by:

FX,C(z) = inf
{

P
{

ω ∈ Ω | w>X(ω) ≤ w>z
}
| w ∈ C+\{0}

}
is called the lower cone distribution function of X (with respect to the cone C). If d = 1 and
C = IR+, then FX,IR+ is just the (usual) cumulative distribution function of X, but for d > 1,
it is different from the joint distribution function even if C = IRd

+ (see [37]).

The upper level set QX,C(p) =
{

z ∈ IRd | FX,C(z) ≥ p
}

is the lower p-quantile of X for

p ∈ [0, 1]; it can easily be shown that QX,C(p) ∈ G(IRd, C) (see ([37], Prop. 4) and also [38]).
For a fixed p ∈ [0, 1], the function X 7→ QX,C(p) is T-translative for Tz = z1I.

The corresponding value-at-risk for multivariate positions are defined via:

VaRα,C(X) = Q−X,C(1− α)

for α ∈ (0, 1), which is a (−T)-translative (with Tz = z1I), positively homogenous risk
measure as defined in Section 4.5. Compare ([37], Section 6).

5. Scalar Translative Functions
5.1. Scalar (T, z∗)-Translative Functions

First, a type of extended real-valued function is introduced, which will provide
scalarizing functions for set-valued T-translative functions. Special cases of such functions
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were considered in [2,39], but the first reference in a finance context seems to be ([17],
Formula (CR), p. 590).

Let X, Z be topological linear spaces with topological duals X∗, Z∗.

Definition 7. Let z∗ ∈ Z∗\{0} and T : Z → X be an injective linear operator. An extended
real-valued function ϕ : X → IR = IR∪ {±∞} is called (T, z∗)-translative if:

∀x ∈ X, ∀z ∈ Z : ϕ(x + Tz) = ϕ(x) + z∗(z). (17)

If ϕ(0) = 0, then ϕ coincides with the continuous linear function z∗ on the image
TZ of T; in applications such as monetary risk measure theory, TZ is a one-dimensional
subspace and (17) is the well-known “cash-additivity” property (see [19]). In ([17], Def. 3.4),
this property for T = idZ and Z a linear subspace of X was called translation invariance
with respect to (Z,−z∗). In ([39], Prop. 4.2), it was called “translative along M”, where
M ⊆ X corresponds to TZ in Definition 7.

Example 5. Let
{

h1, . . . , hm} ⊂ X be a set of m linearly independent elements of X, Z = IRm and:

Tz =
m

∑
k=1

zkhk

(the standard example). An element z∗ ∈ Z∗ can be identified with a w ∈ IRm such that
z∗(z) = w>z for all z ∈ IRm. Then, (17) becomes:

∀x ∈ X, ∀z ∈ IRm : ϕ(x +
m

∑
k=1

zkhk) = ϕ(x) + w>z

If m = 1 and h1 = h ∈ X\{0}, w = 1, (17) specializes further to:

∀x ∈ X, ∀s ∈ IR : ϕ(x + sh) = ϕ(x) + s, (18)

and such functions are called translative in direction h or just h-translative. In this case, T : IR→ X
with Ts = sh.

As usual, ker z∗ = {z ∈ Z | z∗(z) = 0} denotes the kernel of z∗ ∈ Z∗. For r ∈ IR, denote:

E(z∗, r) = {z ∈ Z | z∗(z) = r};

thus, ker z∗ = E(z∗, 0). The next result relates the sublevel sets of ϕ with its zero sublevel
sets where the sublevel set of ϕ at level r ∈ IR is defined as:

Lϕ(r) = {x ∈ X | ϕ(x) ≤ r}.

Proposition 9. If ϕ : X → IR is (T, z∗)-translative, then:
(a) ∀r ∈ IR: Lϕ(r) + (T ker z∗) = Lϕ(r);
(b) ∀r ∈ IR: Lϕ(r) = T(E(z∗, r)) + Lϕ(0).

Proof. (a) This is immediate from (17). (b) First, assume ϕ(x) ≤ r, and take z ∈ E(z∗, r). Then:

0 ≥ ϕ(x)− r = ϕ(x)− z∗(z) = ϕ(x− Tz);

hence, x− Tz ∈ Lϕ(0), so we have “⊆.” Conversely, take z ∈ E(z∗, r), x ∈ Lϕ(0). Then:

ϕ(x + Tz) = ϕ(x) + z∗(z) = ϕ(x) + r ≤ r,

so x + Tz ∈ Lϕ(r).
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For the case of the standard example with m = 1, (a) of Proposition 9 is trivial and (b)
becomes Lϕ(r) = {rh}+ Lϕ(0), which explains the label “directionally translative”: the
sublevel sets are translates of the zero sublevel set in direction h. Note that in this case,
z∗ = 1, ker z∗ = {0}.

The next goal is to prove a primal representation result, that is to reconstruct ϕ from
Lϕ(0). The next result prepares the ground.

Remark 14. To every function ϕ : X → IR, one can assign a function f : X → F (IR, IR+) by:

f (x) =


IR if ϕ(x) = −∞,
[ϕ(x), ∞) if ϕ(x) ∈ IR,
∅ if ϕ(x) = +∞.

(19)

Obviously, epi ϕ = graph f , Lϕ(0) = A f , and the function ϕ can be recovered from f by:

ϕ(x) = inf{s ∈ IR | s ∈ f (x)}.

Since epi ϕ = graph f , the function ϕ is convex (closed) if, and only if, f is convex (closed).
Moreover, ϕ is translative in direction h ∈ X if, and only if, f is T-translative, where T : IR→ X
is defined by Ts = sh.

Proposition 10. Let ϕ : X → IR be translative in direction h. Then:

∀x ∈ X : ϕ(x) = τLϕ(0),h(x) = inf
{

s ∈ IR | x− sh ∈ Lϕ(0)
}

. (20)

Moreover, the set Lϕ(0) is h-directionally closed (for a definition see the last part of Example 3)
and satisfies Lϕ(0)− IR+h = Lϕ(0).

Proof. The properties of Lϕ(0) follow directly from Remark 14, Proposition 4 (j), and
Proposition 2 (a).

Moreover, with f as in Remark 14, we obtain from Proposition 2 (a):

ϕ(x) = inf{s ∈ IR | s ∈ f (x)} = inf
{

s ∈ IR | s ∈ fA f (x)
}

= inf
{

s ∈ IR | x− sh ∈ A f = Lϕ(0)
}

.

Corollary 4. If ϕ : X → IR is (T, z∗)-translative, then it is translative in direction Tz̄ for all
z̄ ∈ E(z∗, 1). In particular,

∀x ∈ X : ϕ(x) = inf
{

s ∈ IR | x− sTz̄ ∈ Lϕ(0)
}

, (21)

and the right-hand side is independent of the choice of z̄ ∈ E(z∗, 1). Moreover, the set Lϕ(0) is
Tz̄-directionally closed and satisfies Lϕ(0)− IR+Tz̄ = Lϕ(0) for each z̄ ∈ E(z∗, 1).

Proof. From (17), Tz̄-translativity is immediate. Hence, all statements follow directly from
Proposition 10.

Proposition 11. If L ⊆ X, z∗ ∈ Z∗\{0} and z̄ ∈ E(z∗, 1) satisfy:
(a) L + (T ker z∗) = L;
(b) L− IR+Tz̄ = L;
(c) L is Tz̄-directionally closed;

then the function:
τL,Tz̄(x) = inf{s ∈ IR | x− sTz̄ ∈ L} (22)

is (T, z∗)-translative and satisfies LτL,Tz̄(0) = L.



www.manaraa.com

Mathematics 2021, 9, 2270 26 of 33

Moreover, the conditions (b) and (c) are then satisfied for each z̄ ∈ E(z∗, 1), and τL,Tz̄ does
not depend on the particular choice of z̄ in E(z∗, 1).

Proof. Take x ∈ X, z ∈ Z, and set t = z∗(z). Then, z− tz̄ ∈ ker z∗ and:

τL,Tz̄(x + Tz) = inf{s ∈ IR | x + Tz− sTz̄ ∈ L}
= inf{s ∈ IR | x + T(z− tz̄)− sTz̄ + tTz̄ ∈ L}
= inf{s− t | s ∈ IR, x− (s− t)Tz̄ ∈ L + {tT(tz̄− z)}}+ t

≥ inf{r ∈ IR | x− rTz̄ ∈ L}+ t

since L + {tT(tz̄− z)} ⊆ L by (a). Hence:

τL,Tz̄(x + Tz) ≥ τL,Tz̄(x) + z∗(z).

Applying this inequality to x + Tz instead of x and −z instead of z, we obtain:

τL,Tz̄(x) = τL,Tz̄(x + Tz− Tz) ≥ τL,Tz̄(x + Tz)− z∗(z),

and altogether, (17) follows.
Obviously, x ∈ L implies 0 ∈ {s ∈ IR | x− sTz̄ ∈ L}; hence, τL,Tz̄(x) ≤ 0. Thus,

L ⊆ LτL,Tz̄(0). On the other hand, let x ∈ LτL,Tz̄(0), i.e.,

τL,Tz̄(x) = inf{s ∈ IR | x− sTz̄ ∈ L} ≤ 0.

If τL,Tz̄(x) = 0, then there is a sequence {sn}n∈IN in IR converging to 0 with x− snTz̄ ∈ L
for all n ∈ IN. Since L is Tz̄-directionally closed, x ∈ L follows. If τL,Tz̄(x) < 0, then there
is s < 0 such that x− sTz̄ ∈ L; hence, x ∈ L + {sTz̄} ⊆ L due to (b). Thus, we also showed
LτL,Tz̄(0) ⊆ L.

Now, assume (b) is satisfied, and take ẑ ∈ E(z∗, 1). Then, z̄ − ẑ ∈ ker z∗; hence, by
(a), (b):

∀x ∈ L, ∀s ≥ 0 : x− sTẑ = x− sTz̄ + sT(z̄− ẑ) ∈ L + T ker z∗ = L.

A similar argument works for (c).

In the previous proposition, one obtains the same functional for each z̄ ∈ E(z∗, 1). This
raises the question when two functions of the form (22) coincide. An answer for the special
case when X is a linear space of random variables was given in ([40], Proposition 1-a) (the
sublinear case) and ([9], Proposition 5.1) (general risk measures). Note, however, that the
following proposition also does not necessarily cover lower semicontinuous functions since
only the directional closure is involved, not the topological closure (compare Example 3
and its references for this type of closure).

Proposition 12. Let L, M ⊆ X and h, k ∈ X\{0}. Then, τL,h = τM,k if, and only if,

dclh(L− IR+h) = dclk(M− IR+k) and dclh(L− IR+h)+ span {h− k} = dclh(L− IR+h).

Proof. One has x ∈ dclh(L− IR+h) if, and only if, there are sequences {sn}n∈IN and
{rn}n∈IN in IR with rn ≥ 0 and x + (sn + rn)h ∈ L, for all n ∈ IN, and limn→∞ sn = 0, which
in turn is equivalent to:

−τL,h(x) = sup{−t ∈ IR | x− th ∈ L} ≥ 0.

Hence, dclh(L− IR+h) = LτL,h(0), and in the same way, dclk(M− IR+k) = LτM,k (0).
Now, assume τL,h = τM,k. Then, LτL,h(0) = LτM,k (0), and consequently, dclh(L− IR+h) =

dclk(M− IR+k).
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If t ∈ IR, then:

τL,h(x + t(h− k)) = τL,h(x− tk) + t = τM,k(x− tk) + t = τM,k(x).

Hence, τL,h(x) = τM,k(x) ≤ 0 implies τL,h(x + t(h − k)) ≤ 0, which proves LτL,h(0) +
span {h − k} ⊆ LτL,h(0), i.e., dclh(L− IR+h) + span {h − k} ⊆ dclh(L− IR+h). The con-
verse inclusion is obvious.

Conversely, dclh(L− IR+h) = dclk(M− IR+k) implies LτL,h(0) = LτM,k (0). Moreover,
for all x ∈ X, for all t ∈ IR,

x− th = x− tk− t(h− k);

hence,
{

t ∈ IR | x− tk ∈ LτM,k (0) = LτL,h(0)
}
⊆
{

t ∈ IR | x− th ∈ LτL,h(0)
}

since by as-
sumption LτL,h(0) + span {h− k} = LτL,h(0). This shows τLτL,h (0),h

(x) ≤ τLτM,k (0),k
(x) for

all x ∈ X. The same argument with reversed roles of (L, h) and (M, k) produces the
converse inequality, so τLτL,h (0),h

(x) = τLτM,k (0),k
(x) for all x ∈ X. Since τL,h is translative

in direction h and τM,k is translative in direction k, Proposition 10 provides τL,h(x) =
τLτL,h (0),h

(x) = τLτM,k (0),k
(x) = τM,k(x) for all x ∈ X.

Finally, a dual representation result for (T, z∗)-translative functions is established by
applying the method from Section 3.3.

Take a function ϕ : X → IR∪ {+∞}, which is proper, lower semicontinuous, convex,
and (T, z∗)-translative for some z∗ ∈ Z∗\{0}. Then, Lϕ(0) is a closed convex set and
ϕ = τLϕ(0),Tz̄ for each z̄ ∈ E(z∗, 1) by Proposition 10. Thus, ϕ is Tz̄-translative and can be
written as:

∀x ∈ X : ϕ(x) = τLϕ(0),Tz̄(x) =
(

ILϕ(0)� αTz̄

)
(x)

where IA(x) = 0 for x ∈ A and IA(x) = +∞ for x 6∈ A is the scalar indicator function in
the sense of convex/variational analysis and αh : X → IR∪ {+∞}, defined by:

αh(x) =
{

s : x = sh
+∞ : otherwise

,

is an h-translative function with h ∈ X\{0}. The conjugate of ϕ is the sum of the conjugates
of ILϕ(0) and αTz̄ (see in ([26], Theorem 2.3.1. (ix))). The former is σLϕ(0), while the latter
can be computed as:

(αTz̄)
∗(x∗) = sup

s∈IR
{sx∗(Tz̄)− s} =

{
0 : (T∗x∗)(z̄) = 1

+∞ : otherwise

The result is stated in the following theorem.

Theorem 2. Let ϕ : X → IR ∪ {+∞} be a proper, lower semicontinuous, convex, and (T, z∗)-
translative function with z∗ ∈ Z∗\{0} and z̄ ∈ E(z∗, 1). Then:

∀x ∈ X : ϕ(x) = sup
{

x∗(x)− σLϕ(0)(x∗) | x∗ ∈ barr Lϕ(0), (T∗x∗)(z̄) = 1
}

. (23)

Proof. In the light of the previous discussion, it suffices to note that, under the assumptions,
ϕ = ϕ∗∗ holds true, and in the definition of the Fenchel–Moreau biconjugate:

ϕ∗∗(x) = sup
x∗∈X∗

{x∗(x)− ϕ∗(x∗)} = sup
x∗∈X∗

{
x∗(x)− σLϕ(0)(x∗)− (αTz̄)

∗(x∗)
}

one can restrict x∗ to those satisfying (T∗x∗)(z̄) = 1 since otherwise +∞ is subtracted
under the supremum, which certainly does not contribute to it. The same argument applies
to x∗ 6∈ dom σLϕ(0) = barr Lϕ(0).
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5.2. Scalar Representation of T-Translative Functions

In this section, scalar representations of set-valued T-translative functions are dis-
cussed. The following concepts and results are recalled. One may compare ([13], Section 4.2)
for a more thorough survey of (convex) scalarization results. If f : X → G(Z, C) and
g : X → G(Z,−C) are functions and z∗ ∈ C+\{0}, the functions:

ψMf ,z∗(x) = inf
z∈ f (x)

z∗(z) and ψOg,z∗(x) = sup
z∈g(x)

z∗(z)

can be used to represent f and g, respectively, as follows:

∀x ∈ X : f (x) =
⋂

z∗∈C+\{0}

{
z ∈ Z | ψMf ,z∗(x) ≤ z∗(z)

}
, (24)

∀x ∈ X : g(x) =
⋂

z∗∈C+\{0}

{
z ∈ Z | z∗(z) ≤ ψOg,z∗(x)

}
. (25)

Such results directly follow from the support function representation of the closed
convex sets f (x) and g(x), respectively. A set-valued convex analysis based on such
representations via families of scalar functions can be found in [41] and a more general
approach in [42]. The properties of such representations within a finance context were also
discussed in [39].

It is assumed in the following that Z is a nontrivial, locally convex, separated topolog-
ical linear space with topological dual Z∗; moreover, (Z, Z∗) is considered to be a dual pair
with the respective topologies.

Theorem 3. (a) Let f : X → G(Z, C) be T-translative. Then, ψMf ,z∗ : X → IR is (T, z∗)-translative
for each z∗ ∈ C+\{0} and (24) holds true.

(b) Let Γ ⊆ Z∗\{0} and {ψz∗}z∗∈Γ be a family of functions such that ψz∗ is (T, z∗)-translative
for all z∗ ∈ Γ. Then, the function fΓ : X → P(Z) defined by:

fΓ(x) =
⋂

z∗∈Γ
{z ∈ Z | ψz∗(x) ≤ z∗(z)}

maps into G(Z, C) with C = (cone Γ)+ = {z ∈ Z | ∀z∗ ∈ Γ : 0 ≤ z∗(z)} and is T-translative.

Proof. (a) is straightforward from (4) and the definition of ψMf ,z∗ . (b) follows from (17) and
the fact that

⋂
i∈I({z}+ Ai) = {z}+

⋂
i∈I Ai for any collection {Ai}i∈I of sets with Ai ⊆ Z

for all i ∈ I.

Of course, a parallel result for G(Z,−C)-valued functions g involving the functions
ψOg,z∗ can be established. Theorem 3, (a) in connection with (24) gives a scalar representa-
tion of T-translative functions. Thus, the theorem can be understood, for example, as a
generalization of ([39], Lem. 4.4, Thm. 4.5).

6. Extension to Set Functions and Random Sets

The complete-lattice framework can also be used to extend set-valued T-translative
functions to functions on (random) sets. The crucial concept is as follows.

Definition 8. Let X be a nonempty set, (L,≤) be a complete lattice, and f : X → L a function.
The functions fM : P(X)→ L and fO : P(X)→ L defined by:

fM(D) = inf
x∈D

f (x) and fO(D) = sup
x∈D

f (x)

are called the inf-extension and sup-extension of f , respectively.
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Such extensions were introduced in [24] and called “canonical extensions” of f ; special
cases are the inf- and sup-translations used in [43] to reduce solutions of set optimization
problems from “sets” to “points” (in X).

Using inf- and sup-extensions, one can extend T-translative functions from X to P(X).
The feasibility of these extensions depends on a feature of the image lattice: a complete
lattice (L,≤) with an addition + is said to be inf-additive and sup-additive, respectively, if:

∀D, E ⊆ L : inf(D + E) = inf D + inf E and sup(D + E) = sup D + sup E

where the addition of sets is the usual elementwise addition with the extension
D + ∅ = ∅ + D = ∅. The relevance of such properties was pointed out in [44], as well
as the fact that, in general, the lattice (P(Z, C),⊇) is inf-additive, but not sup-additive,
whereas it is vice versa for (P(Z,−C),⊆). It was shown in [43] that inf-/sup-additivity
is equivalent to the existence of a residuation operation, which can be considered as a
generalized inverse addition (see Section 3.3).

The following result works in the setup of Section 3.1.

Proposition 13. If f : X → P(Z, C) and g : X → P(Z,−C) are T-translative, then:

∀D ∈ P(X), ∀z ∈ Z : fM(D + {Tz}) = fM(D) + {z},
∀D ∈ P(X), ∀z ∈ Z : gO(D + {Tz}) = gO(D) + {z},

respectively.

Proof. Directly from (4) and the inf-additivity of (P(Z, C),⊇) and the sup-additivity of
(P(Z,−C),⊆), respectively.

Note that the claim is not true in general for fO and gM. Using these concepts, one
can extend translative functions from vector spaces to their power sets, in particular to
sets of random variables if the vector space is a subspace of L0

d. If such a set of random
variables happens to be the set of selectors of a random set, one also obtains an extension
of a translative function to random sets. In ([23], Section 4.1), such a procedure was called
the minimal extension of a nonlinear expectation provided the lattice is G(Z, C), although
used without any reference to the complete lattice framework. Of course, not all random
sets have (characterizing) sets of selectors (cf. [45]), but under some assumptions (e.g., for
p-integrable, bounded random compact sets), nonlinear expectations of random sets can
indeed be characterized by inf-extensions of functions defined on random vectors. An
example is ([45], Proposition 2.2.38), whereas ([45], Formula (2.2.28)) is the definition of
the “selection superlinear expectation” as an inf-extension over a set of selectors with the
underlying lattice G(IRd,−IRd

+).
In order to define convexity and monotonicity type properties for functions on P(X),

one needs an algebraic structure—usually on a smaller set, which is more appropriate
for applications. Let X be a topological linear space, B ⊆ X a closed convex cone, and
G(X, B) the set of all closed convex subsets of X, which are stable under the addition of
B (see Section 2.1). The addition on G(X, B) is D ⊕ E = cl {x + y | x ∈ D, y ∈ E}, the
closure of the usual Minkowski addition with the convention D ⊕ ∅ = ∅⊕ E = ∅ for
D, E ∈ G(X, B). Multiples are defined by sD = {sx | x ∈ D} for s > 0 and 0D = B for
all D ∈ G(X, B). With these operations, G(X, B) becomes a collinear space: compare ([13],
Section 2.3) for more details and references. Of course, one could also use P(X, B) or
C(X, B) as departing points.

Note that the case B = {0} is not excluded; on the contrary, it will play an important
role. The set G(X) := G(X, {0}) is the set of all closed convex subsets of X. Note also
that G(X, B) ⊆ G(X); hence, each function F : G(X) → P(Z, C) also provides a function
F : G(X, B)→ P(Z, C) by restriction.
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Definition 9. A function F : G(X, B)→ P(Z, C) is called convex if:

∀D, E ∈ G(X, B), ∀s ∈ (0, 1) : F(sD⊕ (1− s)E) ⊇ sF(D) + (1− s)F(E),

a function G : G(X, B)→ P(Z,−C) is called concave if:

∀D, E ∈ G(X, B), ∀s ∈ (0, 1) : sG(D) + (1− s)G(E) ⊆ G(sD⊕ (1− s)E).

Proposition 14. (a) f : X → C(Z, C) is convex if, and only if, fM : G(X)→ C(Z, C) is convex.
In particular, if f is convex, then the restriction of fM to G(X, B) is convex as well;

(b) Let F : G(X, B) → C(Z, C) be convex. Then, the restriction F|X : X → C(Z, C) defined
by F|X(x) = F({x}+ B) is convex.

Proof. (a) The if-part relies on the inf-additivity of (C(Z, C),⊇), and the only if-part follows
from choosing D and E as singletons in Definition 9 and the fact that fM({x}) = f (x);

(b) This part is a direct consequence of Definition 9 and Remark 5.

Corollary 5. Let f : X → C(Z, C) be a T-translative function. Then, fM : G(X) → C(Z, C) is
convex if, and only if, A f is a convex set.

Proposition 14 tells us that convexity is a property that is inherited in both directions.
For T-translative functions, this is expressed in the corollary.

Next, we examine the relationship of the B-monotonicity of a function f : X → P(Z, C)
and its inf-extension.

Definition 10. Let S be a subset of P(X). A function F : S → P(Z, C) is called B-monotone if:

D + B ⊇ E implies F(D) ⊇ F(E),

for all D, E ∈ S .
A function F : P(X) → P(Z, C) is called B-monotone on S if the restriction of F to S is

B-monotone.
A function G : S → P(Z,−C) is called B-monotone if:

D ⊆ E− B implies G(D) ⊆ G(E)

for D, E ∈ G(X,−B). A function G : P(X) → P(Z,−C) is called B-monotone on S if the
restriction of G to S is B-monotone.

The above definition can be understood as monotonicity with respect to set relations;
see [13] for more details and references. The following results are formulated for P(Z, C)-
valued functions, but they have the usual twins for P(Z,−C)-valued ones.

Remark 15. A function F : P(X, B)→ P(Z, C) is B-monotone if, and only if,

D ⊇ E implies F(D) ⊇ F(E),

for D, E ∈ P(X, B). Hence, fM is B-monotone on P(X, B) by definition for every function
f : X → P(Z, C).

Proposition 15. (a) The following three statements are equivalent:

1. f : X → P(Z, C) is B-monotone;
2. fM(D + B) = fM(D) for every D ∈ P(X);
3. fM : P(X)→ P(Z, C) is B-monotone;

(b) Let F : G(X, B)→ P(Z, C) be B-monotone. Then, the restriction F|(X,B) : X → P(Z, C)
defined by F|(X,B)(x) = F({x}+ B) is B-monotone.
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Proof. (a) The implication (iii)⇒ (i) follows by choosing D and E as singletons in Definition 10.
For the implication (ii)⇒ (iii), note that D + B ⊇ E implies fM(D) = fM(D + B) ⊇ fM(E).
For the implication (i)⇒ (ii), one has fM(D + B) ⊇ fM(D) by definition since D + B ⊇ D.
Moreover, the B-monotonicity of f implies:

fM(D) = inf
d∈D

f (d) ⊇ inf
d∈D

inf
b∈B

f (d + b) = inf
x∈D+B

f (x) = fM(D + B);

(b) Straightforward.

Corollary 6. Let f : X → P(Z, C) be a T-translative function. Then, fM : P(X)→ P(Z, C) is
B-monotone if, and only if, A f − B ⊆ A f .

One may ask for the relationships of a set-valued function on X and the restriction of its
inf-/sup-extension. Here is the result for the inf-extension of B-monotone P(Z, C)-valued
functions. A parallel result holds true for the sup-extension of P(Z,−C)-valued functions.

Proposition 16. Let f : X → P(Z, C) be an arbitrary function. Then,

f (x) =
(

fM
)
|(X,{0})(x) = fM({x})

for all x ∈ X. If f is B-monotone, then so is f (x) = ( fM)|(X,B)(x) = fM({x}+ B) for all x ∈ X.

Proof. The first part is obvious, and the second part follows from Proposition 15.

The question if the restriction of the inf-/sup-extension of a set-valued function coin-
cides with the original one does not have such a straightforward answer. If F : G(X, B)→
P(Z, C) is a function, then the inf-extension of its restriction to X is:(

F|(X,B)

)M
(D) = inf

x∈D
F|(X,B)(x) = inf

x∈D
F({x}+ B).

This is the original function only if:

F(D) = inf
x∈D

F({x}+ B) (26)

which is not true in general: Consider the function F : G(IR2, {0}) → P(IR2, IR2
+), which

gives the vector infimum with respect to ≤IR2
+

plus IR2
+ of a set D if it exists and IR2 if not.

Consider the set D = {x ∈ IR2 | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 1}. Then, F(D) = {0}+ IR2
+ ∈

G(IR2, IR2
+), F({x}) = {x}+ IR2

+ for x ∈ D and infx∈D F({x}) = D (this infimum now is
in (P(IR2, IR2

+),⊇)).
Thus, Equation (26) is a requirement to a function. It is of course satisfied if, and only

if, F is the inf-extension of a function f : X → P(Z, C), but it remains a challenge to find
more specific assumptions.

Note that F(D) ⊇ infx∈D F({x}+ B) holds, if F is B-monotone.

Next, we use the above concepts to give extensions of T-translative functions to
random sets.

Example 6. Let X be a random closed set, which is p-integrable (see [45], Def. 1.1.1’ and p. 227),
i.e., a function X : Ω→ P(IRd). A selector of X is a random variable X : Ω→ IRd with X ∈ X
P-a.s. The set Lp(X ) comprises all p-integrable selectors of X (see [23,45]). By the definition of
p-integrability, this set is nonempty.

The question is how to extend a T-translative function on Lp
d to such random sets. Let

f : Lp
d → G(IR

d, C) be a T-translative function. The function fM : P(Lp
d)→ G(IR

d, C) defined by:

fM(X ) = inf
X∈Lp(X )

f (X)
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is called the selection random set extension of f . Similarly, if g : Lp
d → G(IR

d,−C) is T-translative, then:

gO(X ) = sup
X∈Lp(X )

g(X)

is its selection random set extension. Of course, these concepts only make sense if the random
sets have reasonable sets of selectors, e.g., for p-integrable closed convex random sets as in ([45],
p. 304ff). Proposition 13 ensures that both extensions are T-translative, and Proposition 14 does
the same with respect to convexity/concavity.

This example shows that there are indeed techniques of set optimization theory that
admit handling “functions whose arguments belong to a nonlinear space” (quote from ([23],
p. 8). In this case, as in the given reference, the “nonlinear space” is a complete lattice of
sets that carries the algebraic structure of a collinear space (see [13]). Another application
of inf-extensions to IRd-valued random variables and their random set extensions can be
found in [38].
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